Achdou, Y., Laurière, M.: Mean field type control with congestion. Appl. Math. Optim. 73(3), 393–418 (2016)
MathSciNet
Article
MATH
Google Scholar
Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)
MathSciNet
Article
MATH
Google Scholar
Albi, G., Pareschi, L.: Binary interaction algorithms for the simulation of flocking and swarming dynamics. Multiscale Model. Simul. 11, 1–29 (2013)
MathSciNet
Article
MATH
Google Scholar
Albi, G., Pareschi, L.: Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Appl. Math. Lett. 26, 397–401 (2013)
MathSciNet
Article
MATH
Google Scholar
Albi, G., Pareschi, L., Zanella, M.: Boltzmann-type control of opinion consensus through leaders. Philos. Trans. R. Soc. A 372, 20140138/1–20140138/18 (2014)
Albi, G., Herty, M., Pareschi, L.: Kinetic description of optimal control problems and applications to opinion consensus. Commun. Math. Sci. 13(6), 1407–1429 (2015)
MathSciNet
Article
MATH
Google Scholar
Albi, G., Bongini, M., Cristiani, E., Kalise, D.: Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76, 1683–1710 (2016)
MathSciNet
Article
MATH
Google Scholar
Albi, G., Pareschi, L., Toscani, G., Zanella, M.: Recent advances in opinion modeling: control and social influence. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles, Vol. 1: Theory, Methods, and Applications. Birkhauser-Springer, Boston (2016)
Albi, G., Pareschi, L., Zanella, M.: Opinion dynamics over complex networks: kinetic modeling and numerical methods. Kinet. Relat. Mod. 10(1), 1–32 (2017)
MATH
Google Scholar
Aletti, G., Naldi, G., Toscani, G.: First-order continuous models of opinion formation. SIAM J. Appl. Math. 67(3), 837–853 (2007)
MathSciNet
Article
MATH
Google Scholar
Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic programming equations. SIAM J. Sci. Comput. 37(1), A181–A200 (2015)
MathSciNet
Article
MATH
Google Scholar
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, L., Lecomte, L., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. PNAS 105(4), 1232–1237 (2008)
Article
Google Scholar
Bellman, R., Kalaba, R.E.: Dynamic Programming and Modern Control Theory, vol. 81. Citeseer (1965)
Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
MathSciNet
Article
MATH
Google Scholar
Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013)
Book
MATH
Google Scholar
Bobylev, A., Nanbu, K.: Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E 61(4), 4576 (2000)
Article
Google Scholar
Bongini, M., Fornasier, M.: Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Netw. Heterog. Media 9(1), 1–31 (2014)
MathSciNet
Article
MATH
Google Scholar
Bongini, M., Fornasier, M.: Sparse control of multiagent systems. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles, vol. 1: Theory, Methods, and Applications. Birkhauser-Springer, Boston (2016)
Buet, C., Dellacherie, S.: On the Chang and Cooper scheme applied to a linear Fokker-Planck equation. Commun. Math. Sci. 8(4), 1079–1090 (2010)
MathSciNet
Article
MATH
Google Scholar
Burger, M., Francesco, M.D., Markowich, P.A., Wolfram, M.-T.: Mean field games with nonlinear mobilities in pedestrian dynamics. Discret. Contin. Dyn. Syst. Ser. B 19(5), 1311–1333 (2014)
MathSciNet
Article
MATH
Google Scholar
Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2003)
MATH
Google Scholar
Camilli, F., Jakobsen, E.R.: A finite element like scheme for integro-partial differential Hamilton-Jacobi-Bellmann equations. SIAM J. Numer. Anal. 47(4), 2407–2431 (2009)
MathSciNet
Article
MATH
Google Scholar
Cañizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21(3), 515–539 (2011)
MathSciNet
Article
MATH
Google Scholar
Caponigro, M., Fornasier, M., Piccoli, B., Trélat, E.: Sparse stabilization and optimal control of the Cucker-Smale model. Math. Control Relat. Fields 3, 447–466 (2013)
MathSciNet
Article
MATH
Google Scholar
Cardaliaguet, P., Hadikhanloo, S.: Learning in mean field games: the fictitious play. ESAIM: COCV 23(2), 569–591 (2017)
Carlini, E., Silva, F.J.: A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52(1), 45–67 (2014)
MathSciNet
Article
MATH
Google Scholar
Carrillo, J.A., D’Orsogna, M.R., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2(2), 363–378 (2009)
MathSciNet
Article
MATH
Google Scholar
Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic, and hydrodynamic models of swarming. In: Naldi, G., Pareschi, L., Toscani, G., Bellomo, N. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 297–336. Birkhäuser Boston, Boston (2010)
Carrillo, J.A., Choi, Y.-P., Hauray, M.: The derivation of swarming models: mean-field limit and Wasserstein distances. In: Muntean, A., Toschi, F. (eds.) Collective Dynamics from Bacteria to Crowds. CISM International Centre for Mechanical Sciences, pp. 1–46. Springer, New York (2014)
Carrillo, J.A., Choi, Y.-P., Pérez, S.: A review on attractive–repulsive hydrodynamics for consensus in collective behavior. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles. Modeling and Simulation in Science, Engineering and Technology, vol. 1, pp. 259–298. Birkhäuser, Cham (2017)
Chang, J., Cooper, G.: A practical difference scheme for Fokker-Planck equations. J. Comput. Phys. 6(1), 1–16 (1970)
Article
MATH
Google Scholar
Choi, Y.-P.: Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces. Nonlinearity 29(7), 1887–1916 (2016)
MathSciNet
Article
MATH
Google Scholar
Choi, Y.-P., Ha, S.-Y., Li, Z.: Emergent dynamics of the Cucker–Smale flocking model and its variants. In: Bellomo, N., Degond, P., Tadmor, E. (eds.) Active Particles. Modeling and Simulation in Science, Engineering and Technology, vol 1, pp. 299–331. Birkhäuser, Cham (2017)
Chuang, Y., D’Orsogna, M., Marthaler, D., Bertozzi, A., Chayes, L.: State transition and the continuum limit for the 2D interacting, self-propelled particle system. Physica D 232, 33–47 (2007)
MathSciNet
Article
MATH
Google Scholar
Chuang, Y., Huang, Y., D’Orsogna, M., Bertozzi, A.: Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. In: IEEE International Conference on Robotics and Automation, pp. 2292–2299 (2007)
Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120(1–2), 253–277 (2005)
MathSciNet
Article
MATH
Google Scholar
Couzin, I., Franks, N.: Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. Lond. B 270, 139–146 (2002)
Article
Google Scholar
Couzin, I., Krause, J., Franks, N., Levin, S.: Effective leadership and decision making in animal groups on the move. Nature 433, 513–516 (2005)
Article
Google Scholar
Cristiani, E., Piccoli, B., Tosin, A.: Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: Naldi, G., Pareschi, L., Toscani, G., Bellomo, N. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science. Engineering and Technology. Birkhäuser Boston, Boston (2010)
Google Scholar
Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9(1), 155–182 (2011)
MathSciNet
Article
MATH
Google Scholar
Cucker, F., Dong, J.-G.: A general collision-avoiding flocking framework. IEEE Trans. Autom. Control 56(5), 1124–1129 (2011)
MathSciNet
Article
Google Scholar
Cucker, F., Mordecki, E.: Flocking in noisy environments. J. Math. Pures Appl. (9) 89(3), 278–296 (2008)
Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)
MathSciNet
Article
Google Scholar
Cucker, F., Smale, S., Zhou, D.: Modeling language evolution. Found. Comput. Math. 4(5), 315–343 (2004)
MathSciNet
MATH
Google Scholar
Degond, P., Herty, M., Liu, J.-G.: Meanfield games and model predictive control. Comm. Math. Sci. 15(5), 1403–1422 (2017)
Duan, R., Fornasier, M., Toscani, G.: A kinetic flocking model with diffusion. Commun. Math. Phys. 300, 95–145 (2010)
MathSciNet
Article
MATH
Google Scholar
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. Society for Industrial and Applied Mathematics, Philadelphia (2013)
Book
MATH
Google Scholar
Festa, A.: Reconstruction of independent sub-domains for a class of Hamilton–Jacobi equations and application to parallel computing. ESAIM: M2AN 50(4), 1223–1240 (2016)
Festa, A., Wolfram, M.-T.: Collision avoidance in pedestrian dynamics. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 3187–3192 (2015)
Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications. Kluwer, Dordrecht (1988)
Book
Google Scholar
Fornasier, M., Solombrino, F.: Mean-field optimal control. ESAIM Control Optim. Calc. Var. 20(4), 1123–1152 (2014)
MathSciNet
Article
MATH
Google Scholar
Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702 (2004)
Article
Google Scholar
Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc. Soc. Simul. 5(3), 1–33 (2002)
Google Scholar
Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)
Book
MATH
Google Scholar
Huang, M., Caines, P., Malhamé, R.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii, USA, December 2003, pp. 98–103 (2003)
Jadbabaie, A., Lin, J., Morse, A.S.: Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules”. IEEE Trans. Autom. Control 48(9), 1675 (2003)
Article
MATH
Google Scholar
Kalise, D., Kröner, A., Kunisch, K.: Local minimization algorithms for dynamic programming equations. SIAM J. Sci. Comput. 38(3), A1587–A1615 (2016)
MathSciNet
Article
MATH
Google Scholar
Ke, J., Minett, J., Au, C.-P., Wang, W.-Y.: Self-organization and selection in the emergence of vocabulary. Complexity 7, 41–54 (2002)
MathSciNet
Article
Google Scholar
Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)
Article
MATH
Google Scholar
Koch, A., White, D.: The social lifestyle of myxobacteria. Bioessays 20, 1030–1038 (1998)
Article
Google Scholar
Lacker, D.: Limit theory for controlled McKean-Vlasov dynamics. SIAM J. Control Optim. 55(3), 1641–1672 (2017)
MathSciNet
Article
MATH
Google Scholar
Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. (3) 2(1), 229–260 (2007)
Leonard, N., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceeding of 40th IEEE Conference on Decision and Control, pp. 2968–2973 (2001)
Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Autom. J. IFAC 36(6), 789–814 (2000)
MathSciNet
Article
MATH
Google Scholar
Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)
MathSciNet
Article
MATH
Google Scholar
Niwa, H.: Self-organizing dynamic model of fish schooling. J. Theor. Biol. 171, 123–136 (1994)
Article
Google Scholar
Nuorian, M., Caines, P., Malhamé, R.: Synthesis of Cucker–Smale type flocking via mean field stochastic control theory: Nash equilibria. In: Proceedings of the 48th Allerton Conference on Communication, Control, and Computing, Monticello, Illinois, pp. 814–819, September 2010, pp. 814–815 (2010)
Nuorian, M., Caines, P., Malhamé, R.: Mean field analysis of controlled Cucker–Smale type flocking: linear analysis and perturbation equations. In: Proceedings of 18th IFAC World Congress Milano (Italy), 28 August–2 September 2011, pp. 4471–4476 (2011)
Pareschi, L., Toscani, G.: Interacting Multi-agent Systems. Kinetic Equations & Monte Carlo Methods. Oxford University Press, Oxford (2013)
Google Scholar
Parrish, J., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 294, 99–101 (1999)
Article
Google Scholar
Parrish, J., Viscido, S., Gruenbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305 (2002)
Article
Google Scholar
Perea, L., Gómez, G., Elosegui, P.: Extension of the Cucker-Smale control law to space flight formations. AIAA J. Guid. Control Dyn. 32, 527–537 (2009)
Article
Google Scholar
Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)
MATH
Google Scholar
Romey, W.: Individual differences make a difference in the trajectories of simulated schools of fish. Ecol. Model. 92, 65–77 (1996)
Article
Google Scholar
Roy, S., Annunziato, M., Borzì, A.: A Fokker-Planck feedback control-constrained approach for modeling crowd motion. J. Comput. Theor. Transp. 45(6), 442–458 (2016)
MathSciNet
Article
Google Scholar
Short, M.B., D’Orsogna, M.R., Pasour, V.B., Tita, G.E., Brantingham, P.J., Bertozzi, A.L., Chayes, L.B.: A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18(suppl.), 1249–1267 (2008)
Sugawara, K., Sano, M.: Cooperative acceleration of task performance: foraging behavior of interacting multi-robots system. Physica D 100, 343–354 (1997)
Article
MATH
Google Scholar
Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11(06), 1157–1165 (2000)
Article
MATH
Google Scholar
Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical xy model: how birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995)
Article
Google Scholar
Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)
MathSciNet
Article
MATH
Google Scholar
Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)
Article
Google Scholar
Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)
MathSciNet
Article
Google Scholar
Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)
MathSciNet
Article
MATH
Google Scholar
Villani, C.: Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)
Yates, C., Erban, R., Escudero, C., Couzin, L., Buhl, J., Kevrekidis, L., Maini, P., Sumpter, D.: Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl Acad. Sci. U.S.A. 106, 5464–5469 (2009)
Article
Google Scholar
Zeidler, E.: Applied Functional Analysis. Applied Mathematical Sciences. Springer, New York (1995)
MATH
Google Scholar