Applied Mathematics & Optimization

, Volume 78, Issue 3, pp 469–491 | Cite as

A Comparison Principle for PDEs Arising in Approximate Hedging Problems: Application to Bermudan Options

  • Géraldine BouveretEmail author
  • Jean-François Chassagneux


In a Markovian framework, we consider the problem of finding the minimal initial value of a controlled process allowing to reach a stochastic target with a given level of expected loss. This question arises typically in approximate hedging problems. The solution to this problem has been characterised by Bouchard et al. (SIAM J Control Optim 48(5):3123–3150, 2009) and is known to solve an Hamilton–Jacobi–Bellman PDE with discontinuous operator. In this paper, we prove a comparison theorem for the corresponding PDE by showing first that it can be rewritten using a continuous operator, in some cases. As an application, we then study the quantile hedging price of Bermudan options in the non-linear case, pursuing the study initiated in Bouchard et al. (J Financial Math 7(1):215–235, 2016).


Stochastic target problems Comparison principle Quantile hedging Bermudan options 

Mathematics Subject Classification

Primary 49L25 60J60 93E20 Secondary 49L20 35K55 


  1. 1.
    Bokanowski, O., Bruder, B., Maroso, S., Zidani, H.: Numerical approximation for a superreplication problem under gamma constraints. SIAM J. Numer. Anal. 47(3), 2289–2320 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bokanowski, O., Picarelli, A., Zidani, H.: State-constrained stochastic optimal control problems via reachability approach. SIAM J. Control Optim. 54(5), 2568–2593 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouchard, B., Bouveret, G., Chassagneux, J.-F.: A backward dual representation for the quantile hedging of Bermudan options. SIAM J. Financial Math. 7(1), 215–235 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouchard, B., Dang, N.-M.: Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation. Finance Stoch. 17(1), 31–72 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bouchard, B., Elie, R., Réveillac, A.: BSDEs with weak terminal condition. preprint (2012). Cited on, pp. 2, 7Google Scholar
  6. 6.
    Bouchard, B., Elie, R., Réveillac, A.: Antony: BSDEs with weak terminal condition. Ann. Probab. 43(2), 572–604 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48(5), 3123–3150 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bouchard, B., Vu, T.N.: A stochastic target approach for P&L matching problems. Math. Oper. Res. 37(3), 526–558 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bouchard, B., Vu, T.N.: The obstacle version of the geometric dynamic programming principle: Application to the pricing of American options under constraints. Appl. Math. Optim. 61(2), 235–265 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bruder, B.: Super-replication of European options with a derivative asset under constrained finite variation strategies (2005), preprintGoogle Scholar
  11. 11.
    Cheridito, P., Soner, H.M., Touzi, N.: The multi-dimensional super-replication problem under gamma constraints. Annales de l’I.H.P. Analyse non linéaire 22(5), 633–666 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Crandall, M.G., Ishii, H., Lions, P.-L.: Users guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cvitanić, J., Pham, H., Touzi, N.: A closed-form solution to the problem of super-replication under transaction costs. Finance Stoch. 3(1), 35–54 (1999)CrossRefGoogle Scholar
  14. 14.
    El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ishii, H., Lions, P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83(1), 26–78 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiao, Y., Klopfenstein, O., Tankov, P.: Hedging under multiple risk constraints (2013). arXiv:1309.5094
  18. 18.
    Moreau, L.: Stochastic target problems with controlled loss in jump diffusion models. SIAM J. Control Optim. 49(6), 2577–2607 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications, vol. 61. Springer, New York (2009)zbMATHGoogle Scholar
  20. 20.
    Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4(3), 201–236 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41(2), 404–424 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Géraldine Bouveret
    • 1
    Email author
  • Jean-François Chassagneux
    • 2
  1. 1.University of OxfordOxfordUK
  2. 2.Laboratoire de Probabilités et Modèles Aléatoires CNRS, UMR 7599Université Paris DiderotParisFrance

Personalised recommendations