Applied Mathematics & Optimization

, Volume 78, Issue 3, pp 457–468 | Cite as

On Zero-Sum Optimal Stopping Games

  • Erhan BayraktarEmail author
  • Zhou Zhou


On a filtered probability space \((\Omega ,\mathcal {F},P,\mathbb {F}=(\mathcal {F}_t)_{t=0,\ldots ,T})\), we consider stopping games \(\overline{V}:=\inf _{{\varvec{\rho }}\in \mathbb {T}^{ii}}\sup _{\tau \in \mathcal {T}}\mathbb {E}[U({\varvec{\rho }}(\tau ),\tau )]\) and \(\underline{V}:=\sup _{{\varvec{\tau }}\in \mathbb {T}^i}\inf _{\rho \in \mathcal {T}}\mathbb {E}[U(\rho ,{\varvec{\tau }}(\rho ))]\) in discrete time, where U(st) is \(\mathcal {F}_{s\vee t}\)-measurable instead of \(\mathcal {F}_{s\wedge t}\)-measurable as is assumed in the literature on Dynkin games, \(\mathcal {T}\) is the set of stopping times, and \(\mathbb {T}^i\) and \(\mathbb {T}^{ii}\) are sets of mappings from \(\mathcal {T}\) to \(\mathcal {T}\) satisfying certain non-anticipativity conditions. We will see in an example that there is no room for stopping strategies in classical Dynkin games unlike the new stopping game we are introducing. We convert the problems into an alternative Dynkin game, and show that \(\overline{V}=\underline{V}=V\), where V is the value of the Dynkin game. We also get optimal \({\varvec{\rho }}\in \mathbb {T}^{ii}\) and \({\varvec{\tau }}\in \mathbb {T}^i\) for \(\overline{V}\) and \(\underline{V}\) respectively.



This research was supported in part by the National Science Foundation under grant DMS-1613170.


  1. 1.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Modern Birkhauser Classics, Birkhauser, Basel (1997)CrossRefGoogle Scholar
  2. 2.
    Bayraktar, E., Zhou, Z.: On a stopping game in continuous time. Proc. Am. Math. Soc. 144, 3589–3596 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dynkin, E.B.: A game-theoretic version of an optimal stopping problem. Dokl. Akad. Nauk SSSR 185, 16–19 (1969)MathSciNetGoogle Scholar
  4. 4.
    Karatza, I., Shreve, S.E.: Methods of Mathematical Finance. Applications of Mathematics. Springer, New York (1998)Google Scholar
  5. 5.
    Kifer, Y.: Dynkin’s games and Israeli options. ISRN Probab. Stat. 2013, 1–17 (2013)CrossRefGoogle Scholar
  6. 6.
    Kobylanski, M., Quenez, M.C.: Optimal stopping time problem in a general framework. Electron. J. Probab. 17(72), 1–28 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kobylanski, M., Quenez, M.-C., De Campagnolle, M.R.: Dynkin games in a general framework. Stoch. Int. J. Probab. Stoch. Process. 86, 304–329 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kobylanski, M., Quenez, M.-C., Rouy-Mironescu, E.: Optimal multiple stopping time problem. Ann. Appl. Probab. 21, 1365–1399 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Neveu, J.: Discrete-parameter martingales, North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., Inc., New York, revised ed., 1975. Translated from the French by T. P. Speed, North-Holland Mathematical Library, vol. 10Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.IMAUniversity of MinnesotaMinneapolisUSA

Personalised recommendations