Risk Sensitive Control of the Lifetime Ruin Problem

Article

Abstract

We study a risk sensitive control version of the lifetime ruin probability problem. We consider a sequence of investments problems in Black–Scholes market that includes a risky asset and a riskless asset. We present a differential game that governs the limit behavior. We solve it explicitly and use it in order to find an asymptotically optimal policy.

Keywords

Probability of lifetime ruin Optimal investment Risk sensitive control Large deviations Differential games 

References

  1. 1.
    Atar, R., Biswas, A.: Control of the multiclass G/G/1 queue in the moderate deviation regime. Ann. Appl. Probab. 424(5), 2033–2069 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Atar, R., Cohen, A.: An asymptotically optimal control for a multiclass queueing model in the moderate-deviation heavy-traffic regime (preprint, 2015a)Google Scholar
  3. 3.
    Atar, R., Cohen, A.: A differential game for a multiclass queueing model in the moderate-deviation heavy-traffic regime (preprint, 2015b)Google Scholar
  4. 4.
    Bayraktar, E., Young, V.R.: Correspondence between lifetime minimum wealth and utility of consumption. Finance Stoch. 11(2), 213–236 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bayraktar, E., Young, V.R.: Minimizing the probability of lifetime ruin under borrowing constraints. Insur. Math. Econ. 41(1), 196–221 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bayraktar, E., Young, V.R.: Optimal investment strategy to minimize occupation time. Ann. Oper. Res. 176(1), 389–408 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bayraktar, E., Young, V.R.: Proving regularity of the minimal probability of ruin via a game of stopping and control. Finance Stoch. 15(4), 785–818 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bayraktar, E., Zhang, Y.: Minimizing the probability of lifetime ruin under ambiguity aversion. SIAM J. Control Optim. 53(1), 58–90 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Browne, S.: Survival and growth with a liability: optimal portfolio strategies in continuous time. Math. Oper. Res. 22(2), 468–493 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Browne, S.: Beating a moving target: optimal portfolio strategies for outperforming a stochastic benchmark. Finance Stoch. 3(3), 275–294 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Browne, S.: Reaching goals by a deadline: digital options and continuous-time active portfolio management. Adv. Appl. Probab. 31(2), 551–577 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics (New York), vol. 38, 2nd edn. Springer, New York (1998)Google Scholar
  13. 13.
    Dubins, L.E., Savage, L.J.: How to Gamble If You Must: Inequalities for Stochastic Processes. McGraw-Hill Series in Probability and Statistics. McGraw-Hill, New York (1965)MATHGoogle Scholar
  14. 14.
    Dupuis, P., Kushner, H.: Minimizing escape probabilities: a large deviations approach. SIAM J. Control Optim. 27(2), 432–445 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fleming, W.H.: Risk sensitive stochastic control and differential games. Commun. Inf. Syst. 6(3), 161–177 (2006)MathSciNetMATHGoogle Scholar
  16. 16.
    Fleming, W.H., McEneaney, W.M.: Risk-sensitive control on an infinite time horizon. SIAM J. Control Optim. 33(6), 1881–1915 (1995)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability. Springer, New York (2006)MATHGoogle Scholar
  18. 18.
    Karatzas, I.: Adaptive control of a diffusion to a goal, and a parabolic MongeAmpere-type equation. Asian J. Math. 1, 295–313 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kulldorff, M.: Optimal control of favorable games with a time limit. SIAM J. Control Optim. 31(1), 52–69 (1993)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Milevsky, M.A., Robinson, C.: Self-annuitization and ruin in retirement. N. Am. Actuar. J. 4(4), 112–124 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Orey, S., Pestien, V.C., Sudderth, W.D.: Reaching zero rapidly. SIAM J. Control Optim. 25(5), 1253–1265 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Pestien, V.C., Sudderth, W.D.: Continuous-time red and black: how to control a diffusion to a goal. Math. Oper. Res. 10(4), 599–611 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Pham, H.: Some applications and methods of large deviations in finance and insurance. In: Paris–Princeton Lectures on Mathematical Finance 2004. Lecture Notes in Mathematics, vol. 1919, pp. 191–244. Springer, Berlin (2007)Google Scholar
  24. 24.
    Poznyak, A.: Advanced Mathematical Tools for Control Engineers: Volume 1: Deterministic Techniques. Elsevier Science, Amsterdam (2009)Google Scholar
  25. 25.
    Sudderth, W.D., Weerasinghe, A.: Controlling a process to a goal in finite time. Math. Oper. Res. 14(3), 400–409 (1989)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yener, H.: Minimizing the lifetime ruin under borrowing and short-selling constraints. Scand. Actuar. J. 2014(6), 535–560 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Young, V.R.: Optimal investment strategy to minimize the probability of lifetime ruin. N. Am. Actuar. J. 8(4), 106–126 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations