Skip to main content
Log in

Sensitivity Analysis for Shape Optimization of a Focusing Acoustic Lens in Lithotripsy

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We are interested in shape sensitivity analysis for an optimization problem arising in medical applications of high intensity focused ultrasound. The goal is to find the optimal shape of a focusing acoustic lens so that the desired acoustic pressure at a kidney stone is achieved. Coupling of the silicone acoustic lens and nonlinearly acoustic fluid region is modeled by the Westervelt equation with nonlinear strong damping and piecewise constant coefficients. We follow the variational approach to calculating the shape derivative of the cost functional which does not require computing the shape derivative of the state variable; however assumptions of certain spatial regularity of the primal and the adjoint state are needed to obtain the derivative, in particular for its strong form according to the Delfour–Hadamard–Zolésio structure theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34, 603–639 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berggren, M.: A Unified Discrete-continuous Sensitivity Analysis Method for Shape Optimization. Lecture at the Radon Institut, Linz, Austria (2005)

    MATH  Google Scholar 

  3. Brunnhuber, R., Kaltenbacher, B., Radu, P.: Relaxation of regularity for the Westervelt equation by nonlinear damping with application in acoustic-acoustic and elastic-acoustic coupling. Evolut. Equ. Control Theory 3(4), 595–626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delfour, M.C., Zolesio, J.P.: Shapes and Geometries, 2nd edn. SIAM, Philadelphia, PA (2001)

    MATH  Google Scholar 

  5. Demengel, F., Demengel, G., Erné, R.: Functional Spaces for the Theorey of Elliptic Partial Differential Equations. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  7. Gangl, P., Langer, U., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. arXiv:1501.04752

  8. Hamilton, M.F., Blackstock, D.T.: Nonlinear Acoustics. Academic Press, New York (1997)

    MATH  Google Scholar 

  9. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of Approximate Shape Gradients. BIT Numerical Mathematics. Springer, Netherlands (2014)

    MATH  Google Scholar 

  10. Hofmannm, S., Mitrea, M., Taylor, M.: Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro Domains, and other classes of finite perimeter domains. J. Geom. Analy. 17, 593–647 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314, 126–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14, 517–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaltenbacher, B., Lasiecka, I.: Global existence and exponential decay rates for the Westervelt equation. Discret. Contin. Dyn. Syst. Ser. S 2, 503–525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaltenbacher, B., Lasiecka I., Veljović, S.: Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data. In: Escher, J. (eds.), Progress in Nonlinear Differential Equations and Their Applications, vol. 60, pp. 357–387 (2011)

  15. Kaltenbacher, B., Peichl, G.: Sensitivity Analysis for a Shape Optimization Problem in Lithotripsy (submitted)

  16. Kaltenbacher, B., Veljović, S.: Sensitivity analysis of linear and nonlinear lithotripter models. Eur. J. Appl. Math. 22, 21–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaltenbacher, M.: Numerical Simulations of Mechatronic Sensors and Actuators. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  18. Kaltenbacher, M., Landes, H., Hoffelner, J., Simkovics, R.: Use of modern simulation for industrial applications of high power ultrasonics. In: Proceedings of the IEEE Ultrasonics Symposium, CD-ROM Proceedings, pp. 673–678. IEEE (2002)

  19. Kasumba, H., Kunisch, K.: Vortex control in channel flows using translational invariant cost functionals. Comput. Optim. Appl. 52, 691–727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laurain, A., Sturm, K.: Domain expression of the shape gradient and application to electrical impedance tomography. Technical Report 1863, Weierstrass Institute for Applied Analysis and Stochastics (2013)

  21. Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Providence (2009)

    Book  MATH  Google Scholar 

  22. Lindqvist, P.: Notes on the p-Laplace Equation. Lecture Notes. University of Jyväskylä (2006)

  23. Liu, W., Yan, N.: Qasi-norm local error estimators for \(p\)-Laplacian. SIAM J. Numer. Anal. 39, 100–127 (2002)

    Article  Google Scholar 

  24. Murat, F., Simon, J.: Sur le contrôle par un domaine géometrique, Rapport 76015. Université Pierre et Marie Curie, Paris (1976)

    Google Scholar 

  25. Nikolić, V.: Local existence results for the Westervelt equation with nonlinear damping and Neumann as well as absorbing boundary conditions. J. Math. Anal. Appl. (2015). doi:10.1016/j.jmaa.2015.02.076

    MathSciNet  MATH  Google Scholar 

  26. Nikolić, V., Kaltenbacher, B.: On higher regularity for the Westervelt equation with strong nonlinear damping. Appl. Anal. doi:10.1080/00036811.2015.1114607

  27. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer, Berlin (1991)

    MATH  Google Scholar 

  28. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. AMS 2010 Graduate Studies in Mathematics (2010)

  29. Veljović, S.: Shape Optimization and Optimal Boundary Control for High Intensity Focused Ultrasound (HIFU). PhD thesis, University of Erlangen-Nuremberg (2009)

  30. Westervelt, P.J.: Parametric acoustic array. J. Acoust. Soc. Am. 35, 535–537 (1963)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the FWF (Austrian Science Fund) under grant P24970 is gratefully acknowledged as well as the support of the Karl Popper Kolleg “Modeling-Simulation-Optimization”, which is funded by the Alpen-Adria-Universität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanja Nikolić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, V., Kaltenbacher, B. Sensitivity Analysis for Shape Optimization of a Focusing Acoustic Lens in Lithotripsy. Appl Math Optim 76, 261–301 (2017). https://doi.org/10.1007/s00245-016-9340-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9340-x

Keywords

Mathematics Subject Classification

Navigation