Abstract
In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented.
Similar content being viewed by others
References
Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)
Abraham, R., Bergounioux, M., Trélat, E.: A penalization approach for tomographic reconstruction of binary axially symmetric objects. Appl. Math. Optim. 58, 345–371 (2008)
Batenburg, K.J.: Reconstructing binary images from discrete X-rays, Technical report, Leiden University (2004)
Batenburg, K.J.: A Network Flow Algorithm for Binary Image Reconstruction from Few Projections, vol. 4245, pp. 6–97. Springer, Berlin (2006)
Bergounioux, M., Trélat, E.: A variational method using fractional order hilbert spaces for tomographic reconstruction of blurred and noised binary images. J. Funct. Anal. 259, 2296–2332 (2010)
Benamou, J.-D., Carlier, G., Cuturi, M., Peyré, G., Nenna, L.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comp. 37, A1111–A1138 (2015)
Bonnotte, N.: Unidimensional and evolution methods for optimal transportation, PhD Thesis, University of Paris Sud Orsay. cvgmt.sns.it (2014)
Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42(2), 397–418 (2010)
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential, Mathematical Studies, vol. 29. North-Holland, Hermann (1978)
Dinten, J.-M.: Tomographie à partir d’un nombre limité de projections: régularisation par des champs markoviens, Ph.D. thesis, Université de Paris–Sud (1990)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math. 51(1), 23–45 (1998)
Herman, G.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomograph. Academic Press, New York (1980)
Hstao, Y.L., Herman, G.T., Gabor, T.: A coordinate ascent approach to tomographic reconstruction of label images from a few projections. Discrete Appl. Math. 151, 184–197 (2005)
Hstao, Y .L., Herman, G.T., Gabor, T.: Discrete tomography withj a very few views, using gibbs priors and a marginal posterior mode approach. Electron. Notes Discrete Math. 20, 399–418 (2005)
Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)
Natterer, F., Wübeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)
Partouche-Sebban, D., Abraham, I.: Scintillateur pour dispositif d’imagerie, module scintillateur, dispositif d’imagerie avec un tel scintillateur et procédé de fabrication d’un scintillateur. French Patent No. 2922319 (2009)
Partouche-Sebban, D., Abraham, I., Laurio, S., Missault, C.: Multi-mev flash radiography in shock physics experiments: specific assemblages of monolithic scintillating crystals for use in ccd-based imagers, X-ray optics and instrumentation, Article ID 156984, p. 9 (2010)
Quinto, E.T.: Singularities of the x-ray transform and limited data tomography in \({\mathbb{R}} ^2\) and \({\mathbb{R}} ^3\). SIAM J. Math. Anal 24, 1215–1225 (1993)
Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Scale Space and Variational Methods in Computer Vision, LNCS, vol. 6667, pp. 435-446, Springer (2012)
Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser Verlag, Basel (2015)
Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abraham, I., Abraham, R., Bergounioux, M. et al. Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach. Appl Math Optim 75, 55–73 (2017). https://doi.org/10.1007/s00245-015-9323-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00245-015-9323-3