Ansel, J.P., Stricker, C. (1993). Décomposition de Kunita-Watanabe. In Azema, J., Meyer, P. A., Yor, M. (eds.). Séminaire de probabilité \(XXVII\), vol. 1557. Lecture Notes in Mathematics, pp. 30–32. Springer (1993)
Ansel, J.P., Stricker, C.: Lois de martingale, densités et décomposition de Föllmer-Schweizer. Annales de l’Institut Henri-Poincaré Probabilités et Statistiques 28(3), 375–392 (1992)
MATH
MathSciNet
Google Scholar
Asmussen, S., Rosinski, J.: Approximations of small jump Lévy processes with a view towards simulation. J. Appl. Probab. 38, 482–493 (2001)
MATH
MathSciNet
Article
Google Scholar
Benth, F.E., Di Nunno, G., Khedher, A.: A note on convergence of option prices and their Greeks for Lévy models. Stoch. Int. J. Probab. Stoch. Proces. 85(6), 1015–1039 (2013)
Benth, F.E., Di Nunno, G., Khedher, A.: Robustness of option prices and their deltas in markets modelled by jump-diffusions. Commun. Stoch. Anal. 5(2), 285–307 (2011)
MathSciNet
Google Scholar
Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973)
MathSciNet
Article
Google Scholar
Bouchard, B., Touzi, N.: Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)
MATH
MathSciNet
Article
Google Scholar
Bouchard, B., Elie, R.: Discrete time approximation of decoupled forward backward SDE with jumps. Stoch. Process. Appl. 118, 53–75 (2008)
MATH
MathSciNet
Article
Google Scholar
Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975)
MATH
MathSciNet
Article
Google Scholar
Carbone, R., Ferrario, B., Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl. 52(2), 304–314 (2008)
MATH
MathSciNet
Article
Google Scholar
Choulli, T., Krawczyk, L., Stricker, C.: \(\cal E\)-martingales and their applications in mathematical finance. Ann. Probab. 26(2), 853–876 (1998)
MATH
MathSciNet
Article
Google Scholar
Choulli, T., Vandaele, N., Vanmaele, M.: The Föllmer-Schweizer decomposition: comparison and description. Stoch. Process. Appl. 120(6), 853–872 (2010)
MATH
MathSciNet
Article
Google Scholar
Cont, R., Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman Hall
Daveloose, C., Khedher, A., Vanmaele, M. (2013). Robustness of quadratic hedging strategies in finance via Fourier transform. Submitted paper. E-print: http://mediatum.ub.tum.de/doc/1198117/1198117
Föllmer, H., Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In: Davis, M.H.A., Elliot, R.J. (eds.). Applied Stochastic Analysis, pp. 389–414.
Föllmer, H., Sondermann, D. (1986). Hedging of non redundant contingent claims. In: Hildenbrand, W., Mas-Collel, A. (eds.) Contributions to Mathematical Economics, pp. 205–223. North-Holland, Elsevier (1986)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
MATH
Book
Google Scholar
Jeanblanc, M., Mania, M., Santacroce, M., Schweizer, M.: Mean-variance hedging via stochastic control and BSDEs for general semimartingales. Ann. Appl. Probab. 22(6), 2388–2428 (2012)
MATH
MathSciNet
Article
Google Scholar
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Fin. 7(1), 1–71 (1997)
MATH
MathSciNet
Article
Google Scholar
Khedher, A., Schulz, T., Vanmaele, M. (2014). Model risk and discretisation of hedging strategies in incomplete markets. Working paper.
Kohatsu-Higa, A., Tankov, P.: Jump-adapted discretisation schemes for Lévy-driven SDEs. Stoch. Process Appl. 120(11), 2258–2285 (2010)
MATH
MathSciNet
Article
Google Scholar
Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. 30, 209–245 (1967)
MATH
MathSciNet
Google Scholar
Di Nunno, G.: Stochastic integral representations, stochastic derivatives and minimal variance hedging. Stoch. Stoch. Rep. 73, 181–198 (2001)
Article
Google Scholar
Di Nunno, G.: Random Fields: non-anticipating derivative and differentiation formulas. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(3), 465–481 (2007)
MATH
MathSciNet
Article
Google Scholar
Di Nunno, G., Eide, I.B.: Minimal variance hedging in large financial markets: random fields approach. Stoch. Anal. Appl. 28, 54–85 (2010)
MATH
MathSciNet
Article
Google Scholar
Øksendal, B., Zhang, T. (2009). Backward stochastic differential equations with respect to general filtrations and applications to insider finance. Preprint No. 19, September, Department of Mathematics, University of Oslo, Norway
El Otmani, M.: Reflected BSDE driven by a Lévy process. J. Theor. Probab. 22, 601–619 (2009)
MATH
Article
Google Scholar
Protter, P. (2005) Stochastic Integration and Differential Equations, 2nd edn., Version 2.1. Springer, Berlin (2005)
Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanic, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge University Press.
Schweizer, M.: Approximating random variables by stochastic integrals. Ann. Probab. 22(3), 1536–1575 (1994)
MATH
MathSciNet
Article
Google Scholar
Tang, S., Li., X. , : Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)
Vandaele, N., Vanmaele, M.: A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a Lévy process financial market. Insur. Math. Econ. 42(3), 1128–1137 (2008)
MATH
MathSciNet
Article
Google Scholar