Applied Mathematics & Optimization

, Volume 72, Issue 3, pp 353–389 | Cite as

Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps

  • Giulia Di Nunno
  • Asma KhedherEmail author
  • Michèle Vanmaele


We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure with infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.


Quadratic hedging strategies  Backward stochastic differential equations Jump-diffusions Robustness 



The authors acknowledge the Centre of Advanced Study (CAS) at the Norwegian Royal Academy of Science and Letters (Program SEFE) for providing occasions of research discussions at the finalising stage of this paper. Also they acknowledge the valuable suggestions of the referee and Associate Editor. Asma Khedher thanks the KPMG Center of Excellence in Risk Management for the financial support. Michèle Vanmaele acknowledges the Research Foundation Flanders (FWO) and the Special Research Fund (BOF) of the Ghent University for providing the possibility to go on sabbatical leave to CAS.


  1. 1.
    Ansel, J.P., Stricker, C. (1993). Décomposition de Kunita-Watanabe. In Azema, J., Meyer, P. A., Yor, M. (eds.). Séminaire de probabilité \(XXVII\), vol. 1557. Lecture Notes in Mathematics, pp. 30–32. Springer (1993)Google Scholar
  2. 2.
    Ansel, J.P., Stricker, C.: Lois de martingale, densités et décomposition de Föllmer-Schweizer. Annales de l’Institut Henri-Poincaré Probabilités et Statistiques 28(3), 375–392 (1992)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Asmussen, S., Rosinski, J.: Approximations of small jump Lévy processes with a view towards simulation. J. Appl. Probab. 38, 482–493 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Benth, F.E., Di Nunno, G., Khedher, A.: A note on convergence of option prices and their Greeks for Lévy models. Stoch. Int. J. Probab. Stoch. Proces. 85(6), 1015–1039 (2013)Google Scholar
  5. 5.
    Benth, F.E., Di Nunno, G., Khedher, A.: Robustness of option prices and their deltas in markets modelled by jump-diffusions. Commun. Stoch. Anal. 5(2), 285–307 (2011)MathSciNetGoogle Scholar
  6. 6.
    Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bouchard, B., Touzi, N.: Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bouchard, B., Elie, R.: Discrete time approximation of decoupled forward backward SDE with jumps. Stoch. Process. Appl. 118, 53–75 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Carbone, R., Ferrario, B., Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl. 52(2), 304–314 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Choulli, T., Krawczyk, L., Stricker, C.: \(\cal E\)-martingales and their applications in mathematical finance. Ann. Probab. 26(2), 853–876 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Choulli, T., Vandaele, N., Vanmaele, M.: The Föllmer-Schweizer decomposition: comparison and description. Stoch. Process. Appl. 120(6), 853–872 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Cont, R., Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman HallGoogle Scholar
  14. 14.
    Daveloose, C., Khedher, A., Vanmaele, M. (2013). Robustness of quadratic hedging strategies in finance via Fourier transform. Submitted paper. E-print:
  15. 15.
    Föllmer, H., Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In: Davis, M.H.A., Elliot, R.J. (eds.). Applied Stochastic Analysis, pp. 389–414.Google Scholar
  16. 16.
    Föllmer, H., Sondermann, D. (1986). Hedging of non redundant contingent claims. In: Hildenbrand, W., Mas-Collel, A. (eds.) Contributions to Mathematical Economics, pp. 205–223. North-Holland, Elsevier (1986)Google Scholar
  17. 17.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jeanblanc, M., Mania, M., Santacroce, M., Schweizer, M.: Mean-variance hedging via stochastic control and BSDEs for general semimartingales. Ann. Appl. Probab. 22(6), 2388–2428 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Fin. 7(1), 1–71 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Khedher, A., Schulz, T., Vanmaele, M. (2014). Model risk and discretisation of hedging strategies in incomplete markets. Working paper.Google Scholar
  21. 21.
    Kohatsu-Higa, A., Tankov, P.: Jump-adapted discretisation schemes for Lévy-driven SDEs. Stoch. Process Appl. 120(11), 2258–2285 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. 30, 209–245 (1967)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Di Nunno, G.: Stochastic integral representations, stochastic derivatives and minimal variance hedging. Stoch. Stoch. Rep. 73, 181–198 (2001)CrossRefGoogle Scholar
  24. 24.
    Di Nunno, G.: Random Fields: non-anticipating derivative and differentiation formulas. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(3), 465–481 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Di Nunno, G., Eide, I.B.: Minimal variance hedging in large financial markets: random fields approach. Stoch. Anal. Appl. 28, 54–85 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Øksendal, B., Zhang, T. (2009). Backward stochastic differential equations with respect to general filtrations and applications to insider finance. Preprint No. 19, September, Department of Mathematics, University of Oslo, NorwayGoogle Scholar
  27. 27.
    El Otmani, M.: Reflected BSDE driven by a Lévy process. J. Theor. Probab. 22, 601–619 (2009)zbMATHCrossRefGoogle Scholar
  28. 28.
    Protter, P. (2005) Stochastic Integration and Differential Equations, 2nd edn., Version 2.1. Springer, Berlin (2005)Google Scholar
  29. 29.
    Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanic, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge University Press.Google Scholar
  30. 30.
    Schweizer, M.: Approximating random variables by stochastic integrals. Ann. Probab. 22(3), 1536–1575 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Tang, S., Li., X. , : Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)Google Scholar
  32. 32.
    Vandaele, N., Vanmaele, M.: A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a Lévy process financial market. Insur. Math. Econ. 42(3), 1128–1137 (2008)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giulia Di Nunno
    • 1
    • 2
  • Asma Khedher
    • 3
    Email author
  • Michèle Vanmaele
    • 4
  1. 1.Center of Mathematics for ApplicationsUniversity of OsloOsloNorway
  2. 2.Norwegian School of Economics and Business AdministrationBergenNorway
  3. 3.Chair of Mathematical FinanceTechnische Universität MünchenGarching-HochbruckGermany
  4. 4.Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityGhentBelgium

Personalised recommendations