Abstract
This paper presents a general existence and uniqueness result for mean field games equations on graphs (\(\mathcal {G}\)-MFG). In particular, our setting allows to take into account congestion effects of almost any form. These general congestion effects are particularly relevant in graphs in which the cost to move from one node to another may for instance depend on the proportion of players in both the source node and the target node. Existence is proved using a priori estimates and a fixed point argument à la Schauder. We propose a new criterion to ensure uniqueness in the case of Hamiltonian functions with a complex (non-local) structure. This result generalizes the discrete counterpart of uniqueness results obtained in Lasry and Lions (C. R. Acad. Sci. Paris 343(10):679–684, 2006). Lions (http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp, 2014).
Similar content being viewed by others
Notes
Gomes also studied discrete (in time) mean field games in [16].
We call \(\lambda \) a control although it is an abuse of terminology since the controls consist in the values of \(\lambda \).
We do not prove any verification theorem. As we obtain a smooth solution in Theorem 1, there is in fact no technical issue.
Matrices \(B^i\)s and \(C^i\)s are transpose of one another.
References
Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)
Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)
Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51(5), 2585–2612 (2013)
Bardi, M.: Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7(2), 243–261 (2012)
Bardi, M., Priuli, F.: LQG mean-field games with ergodic cost. Preprint (2013)
Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013)
Bensoussan, A., Sung, K.C.J., Yam, S.C.P., Yung, S.P.: Linear quadratic mean field games. Preprint (2011)
Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, vol. 58. Springer, New York (2004)
Cardaliaguet, P.: Notes on mean field games. https://www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf (2010)
Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games. Netw. Heterog. Media, 7(2), 279–301 (2012)
Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51(5), 3558–3591 (2013)
Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4), 2705–2734 (2013)
Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)
Carmona, R., Fouque, J.-P., Sun, L.H.: Mean field games and systemic risk. arXiv preprint arXiv:1308.2172, (2013)
Chan, P., Sircar, R.: Bertrand and Cournot Mean Field Games. Preprint (2014)
Gomes, D., Mohr, J., Souza, R.: Discrete time, finite state space mean field games. Journal de Mathématiques Pures et Appliquées 93(3), 308–328 (2010)
Gomes, D., Mohr, J., Souza, R.: Mean field limit of a continuous time finite state game. Working paper (2011)
Gomes, D., Pires, G., Sánchez-Morgado, H.: A-priori estimates for stationary mean-field games. Netw. Heterog. Media 7(2), 303–314 (2012)
Guéant, O.: Mean field games and applications to economics. PhD thesis, Université Paris-Dauphine (2009)
Guéant, O.: A reference case for mean field games models. Journal de mathématiques pures et appliquées 92(3), 276–294 (2009)
Guéant, O.: Mean field games equations with quadratic hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22(09) (2012)
Guéant, O.: New numerical methods for mean field games with quadratic costs. Netw. Heterog. Media 7(2), 315–336 (2012)
Guéant, O.: Mean Field Games with a Quadratic Hamiltonian: A Constructive Scheme. Advances in Dynamic Games, pp. 229–241. Birkhäuser, Boston (2013)
Guéant, O., Lasry, J.M., Lions, P.L.: Mean field games and applications. In: Paris Princeton Lectures on Mathematical Finance, Springer, Berlin (2010)
Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)
Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20(4), 567 (2010)
Lachapelle, A., Wolfram, M.-T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transport. Res. Part B 45(10), 1572–1589 (2011)
Lachapelle, A., Lasry, J.-M., Lehalle, C.-A., Lions, P.-L.: Efficiency of the price formation process in presence of high frequency participants: a mean field game analysis. arXiv preprint arXiv:1305.6323 (2013)
Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen i. le cas stationnaire. C. R. Acad. Sci. Paris 343(9), 619–625 (2006)
Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen ii. horizon fini et contrôle optimal. C. R. Acad. Sci. Paris 343(10), 679–684 (2006)
Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
Lions, P.-L.: Cours au collège de france: Théorie des jeux à champs moyens. http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp (2014)
Moll, B., Lucas, R.: Knowledge growth and the allocation of time. J. Polit. Econ. 122(1), 178–222 (2014)
Acknowledgments
The author wishes to acknowledge the helpful conversations with Yves Achdou (Université Paris-Diderot), François Delarue (Université Nice Sophia Antipolis), Jean-Michel Lasry (Université Paris-Dauphine) and Pierre-Louis Lions (Collège de France).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guéant, O. Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs. Appl Math Optim 72, 291–303 (2015). https://doi.org/10.1007/s00245-014-9280-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00245-014-9280-2