Abstract
We investigate the relation between optimal control and controllability for a phase field system modeling the solidification process of pure materials in the case that only one control force is used. Such system is constituted of one energy balance equation, with a localized control associated to the density of heat sources and sinks to be determined, coupled with a phase field equation with the classical nonlinearity derived from the two-well potential. We prove that this system has a local controllability property and we establish that a sequence of solutions of certain optimal control problems converges to a solution of such controllability problem.
This is a preview of subscription content, log in to check access.
References
- 1.
Benincasa, T., Moroşanu, C.: Fractional steps scheme to approximate the phase-field transition system with non-homogeneous Cauchy–Neumann boundary conditions. Numer. Funct. Anal. Optim. 30(3–4), 199–213 (2009)
- 2.
Benincasa, T., Favini, A., Moroşanu, C.: A product formula approach to a nonhomogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part I: a phase-field model. J. Optim. Theory Appl. 148(1), 14–30 (2011)
- 3.
Benincasa, T., Favini, A., Moroşanu, C.: A product formula approach to a nonhomogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part II: Lie–Trotter product formula. J. Optim. Theory Appl. 148(1), 14–30 (2011)
- 4.
Moroşanu, C.: Boundary optimal control problem for the phase-field transition system using fractional steps method. Control Cybern. 32(1), 5–32 (2003)
- 5.
Moroşanu, C.: The phase-field transition system with non-homogeneous Cauchy–Stefan–Boltzmann and homogeneous Neumann boundary conditions and non-constant thermal conductivity. Nonlinear Anal. 87, 22–32 (2013)
- 6.
Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227(12), 6241–6248 (2008)
- 7.
Hamide, M., Massoni, E., Bellet, M.: Adaptive mesh technique for thermal–metallurgical numerical simulation of arc welding processes. Int. J. Numer. Methods Eng. 73(5), 624–641 (2008)
- 8.
He, Q., Kasagi, N.: Phase-field simulation of small capillary-number two-phase flow in a microtube. Fluid Dyn. Res. 40(7–8), 497–509 (2008)
- 9.
Moroşanu, C., Wang, G.: State-constrained optimal control for the phase-field transition system. Numer. Funct. Anal. Optim. 28(3–4), 379–403 (2007)
- 10.
Rosam, J., Jimack, P.K., Mullis, A.A.: Fully implicit, fully adaptive time and space discretization method for phase-field simulation of binary alloy solidification. J. Comput. Phys. 225(2), 1271–1287 (2007)
- 11.
Sun, Y., Beckermann, C.: Phase-Field Simulation of Two-Phase Micro-flows in a Hele-Shaw Cell, Computational Methods in Multiphase Flow III, WIT Trans. Eng. Sci., vol. 50. WIT Press, Southampton (2005)
- 12.
Tan, Z., Huang, Y.: An alternating Crank–Nicolson method for the numerical solution of the phase-field equations using adaptive moving meshes. Int. J. Numer. Methods Fluids 56(9), 1673–1693 (2008)
- 13.
Zhao, P., Heinrich, J.C., Poirier, D.R.: Dendritic solidification of binary alloys with free and forced convection. Int. J. Numer. Methods Fluids 49(3), 233–266 (2005)
- 14.
Ahmad, N.A., Wheeler, A.A., Boettinger, W.J., Mcfadden, G.B.: Solute trapping and solute drag in a phase-field model of rapid solidification. Phys. Rev. E Stat. Phys. Plasmas Fluids 58(3B), 3436–3450 (1998)
- 15.
Boldrini, J.L., Vaz, C.L.D.: Existence and regularity of solutions of a phase field model for solidification with convection of pure materials in two dimensions. Electron. J. Differ. Equ. 109, 1–25 (2003)
- 16.
Caginalp, G.: An analysis of phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)
- 17.
Caginalp, G.: Stefan and Hele-Shaw type models as assymptotic limits of the phase-field equations. Phys. Rev. A 39(11), 5887–5896 (1989)
- 18.
Caginalp, G.: Phase field computations of single-needle crystals, crystal growth and motion by mean curvature. SIAM J. Sci. Comput. 15(1), 106–126 (1994)
- 19.
Caginalp, G., Jones, J.: A derivation and analysis of phase field models of thermal alloys. Annal. Phys. 237, 66–107 (1995)
- 20.
Cherfils, L., Gatti, S., Miranville, A.: Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials. J. Math. Anal. Appl. 343(1), 557–566 (2008)
- 21.
Colli, P., Grasselli, M., Ito, A.: On a parabolic–hyperbolic Penrose–Fife phase-field system. Electron. J. Differ. Equ. 100, 1–30 (2002)
- 22.
Gilardi, G., Marson, A.: On a Penrose–Fife type system with Dirichlet boundary conditions for temperature. Math. Methods Appl. Sci. 26(15), 1303–1325 (2003)
- 23.
Gilardi, G., Rocca, E.: Convergence of phase field to phase relaxation models governed by an entropy equation with memory. Math. Methods Appl. Sci. 29(18), 2149–2179 (2006)
- 24.
Jiménez-Casas, A.: Invariant regions and global existence for a phase field model. Discret. Contin. Dyn. Syst. Ser. S 1(2), 273–281 (2008)
- 25.
Karma, A.: Phase-field models of microstructural pattern formation. Thermodyn. Microstruct. Plast. NATO Sci. Ser. II Math. Phys. Chem. 108, 65–89 (2003)
- 26.
Krejcí, P., Rocca, E., Sprekels, J.: Non-local temperature-dependent phase-field models for non-isothermal phase transitions. J. Lond. Math. Soc. 76(1), 197–210 (2007)
- 27.
Krejcí, P., Sprekels, J., Stefanelli, U.: One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions. Adv. Math. Sci. Appl. 13(2), 695–712 (2003)
- 28.
Laurençot, P., Schimperna, G., Stefanelli, U.: Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions. J. Math. Anal. Appl. 271(2), 426–442 (2002)
- 29.
McFadden, G.B., Wheeler, A.A., Anderson, D.M.: Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities. Phys. D 144(1—-2), 154–168 (2000)
- 30.
Moroşanu, C.: Analysis and optimal control of phase-field transition system. Nonlinear Funct. Anal. Appl. 8(3), 433–460 (2003)
- 31.
Nestler, B., Garcke, H., Stinner, B.: Multicomponent alloy solidification: phase-field modeling and simulations. Phys. Rev. E 71(4), 1–6 (2005)
- 32.
Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase field type for the kinetics of phase transitions. Phys. D 43, 44–62 (1990)
- 33.
Planas, G.: Existence of solutions to a phase-field model with phase-dependent heat absorption. Electron. J. Differ. Equ. 28, 1–12 (2007)
- 34.
Stinner, B.: Weak solutions to a multi-phase field system of parabolic equations related to alloy solidification. Adv. Math. Sci. Appl. 17(2), 589–638 (2007)
- 35.
Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1, 69–84 (2001)
- 36.
Aizicovici, S., Feireisl, E., Issard-Roch, F.: Long time convergence of solutions to a phase-field system. Math. Methods Appl. Sci. 24, 277–287 (2001)
- 37.
Bates, P.W., Zheng, S.: Inertial manifolds and inertial sets for phase-field equations. J. Dyn. Differ. Equ. 4, 375–397 (1992)
- 38.
Brochet, D., Chen, X., Hilhorst, D.: Finite dimensional exponential attractor for the phase-field model. Appl. Anal. 49, 197–212 (1993)
- 39.
Jiang, J.: Convergence to equilibrium for a parabolic–hyperbolic phase field model with Cattaneo heat flux law. J. Math. Anal. Appl. 341(1), 149–169 (2008)
- 40.
Kapustyan, A.V., Melnik, V.S., Valero, J.: Attractors of multivalued dynamical processes generated by phase-field equations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(7), 1969–1983 (2003)
- 41.
Röger, M., Tonegawa, Y.: Convergence of phase-field approximations to the Gibbs–Thomson law. Calc. Var. Partial Differ. Equ. 32(1), 111–136 (2008)
- 42.
Sprekels, J., Zheng, S.: Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions. J. Math. Anal. Appl. 279(1), 97–110 (2003)
- 43.
Hoffman, K., Jiang, L.: Optimal control of a phase field model for solidification. Numer. Funct. Anal. Optim. 13, 11–27 (1992)
- 44.
Wang, L., Wang, G.: The optimal time control of a phase-field system. SIAM J. Control Optim. 42(4), 1483–1508 (2003)
- 45.
Barbu, V.: Local controllability of the phase field system. Nonlinear Anal. 50(3), 363–372 (2002)
- 46.
Ammar-Khodja, F., Benabdallah, A., Dupaix, C., Kostin, I.: Controllability to the trajectories of phase-field models by one control force. SIAM J. Control Optim. 42(5), 1661–1680 (2003)
- 47.
González-Burgos, M., Pérez-García, R.: Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot. Anal. 46(2), 123–162 (2006)
- 48.
Cao, Y.: Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations. Appl. Math. Comput. 119(2–3), 127–145 (2001)
- 49.
Adams, R.: Sobolev Spaces. Academic Press, New York (1975)
- 50.
Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)
- 51.
Mikhaylov, V.P.: Partial Differential Equations. Mir Publishers, Moscow (1978)
- 52.
Lions, J.L.: Control of Distributed Singular Systems. Gauthier-Villars, Paris (1985)
- 53.
Chae, D., Imanuvilov, O.Y., Kim, S.M.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dyn. Control Syst. 2(4), 449–483 (1996)
- 54.
Fabre, C., Puel, J.-P., Zuazua, E.: Approximate controllability of the semilinear heat equation. Proc. R. Soc. Edinb. 125(1), 31–61 (1995)
- 55.
Doubova, A., Fernández-Cara, E., González-Burgos, M., Zuazua, E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41(3), 798–819 (2002)
Acknowledgments
Part of this research was done while the first author was visiting Universidade Estadual de Campinas, and he expresses his thanks for their kind hospitality. The first author’s study was partially supported by INCTMat, CAPES, CNPq (Brazil). The second author’s study was partially supported by FAPESP and CNPq (Brazil). The third author’s study was partially supported by FAPESP (Brazil).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Araruna, F.D., Boldrini, J.L. & Calsavara, B.M.R. Optimal Control and Controllability of a Phase Field System with One Control Force. Appl Math Optim 70, 539–563 (2014). https://doi.org/10.1007/s00245-014-9249-1
Published:
Issue Date:
Keywords
- Phase field models
- Solidification models
- Optimal control
- Controllability
Mathematics Subject Classification
- 82B26
- 49J20
- 93B05