Skip to main content
Log in

Decay Rates to Equilibrium for Nonlinear Plate Equations with Degenerate, Geometrically-Constrained Damping

  • Published:
Applied Mathematics & Optimization Submit manuscript

An Erratum to this article was published on 11 October 2014

Abstract

We analyze the convergence to equilibrium of solutions to the nonlinear Berger plate evolution equation in the presence of localized interior damping (also referred to as geometrically constrained damping). Utilizing the results in (Geredeli et al. in J. Differ. Equ. 254:1193–1229, 2013), we have that any trajectory converges to the set of stationary points \(\mathcal{N}\). Employing standard assumptions from the theory of nonlinear unstable dynamics on the set \(\mathcal{N}\), we obtain the rate of convergence to an equilibrium. The critical issue in the proof of convergence to equilibria is a unique continuation property (which we prove for the Berger evolution) that provides a gradient structure for the dynamics. We also consider the more involved von Karman evolution, and show that the same results hold assuming a unique continuation property for solutions, which is presently a challenging open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloui, F., Hassen, I.B., Haraux, A.: Compactness of trajectories to some nonlinear second order evolution equations and applications. J. Math. Pures Appl. (2013, in press)

  2. Babin, A.: Global attractors in PDE. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1B. Elsevier, Amsterdam (2006)

    Google Scholar 

  3. Babin, A., Vishik, M.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  4. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Groningen (1976)

    Book  MATH  Google Scholar 

  5. Berger, H.M.: A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465–472 (1955)

    MathSciNet  MATH  Google Scholar 

  6. Bucci, F., Toundykov, D.: Finite dimensional attractor for a composite system of wave/plate equations with localized damping. Nonlinearity 23, 2271–2306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charao, R.C., Bisognin, E., Bisognin, V., Pazoto, A.F.: Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping. Prog. Nonlinear Differ. Equ. Appl. 66, 67–91 (2005)

    MathSciNet  Google Scholar 

  8. Cherrier, P., Milani, A.: Parabolic equations of von Karman type on Kähler manifolds, II. Bull. Sci. Math. 133(2), 113–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chill, R., Jendoubi, M.A.: Convergence to steady states in asymptotically autonomous semilinear evolution equations. Nonlinear Anal. 53, 1017–1039 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chill, R., Haraux, A., Jendoubi, M.A.: Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations. Anal. Appl. 7, 351–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Acta Press, Kharkov (1999) (in Russian). English translation: Acta Press, Kharkov (2002). http://www.emis.de/monographs/Chueshov/

    MATH  Google Scholar 

  12. Chueshov, I.: Convergence of solutions of von Karman evolution equations to equilibria. Appl. Anal. 91(9) 1699–1715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chueshov, I., Lasiecka, I.: Global attractors for von Karman evolutions with a nonlinear boundary dissipation. J. Differ. Equ. 198, 196–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chueshov, I., Lasiecka, I.: Attractors for second-order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16(2), 469–512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chueshov, I., Lasiecka, I.: Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping. J. Differ. Equ. 233, 42–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chueshov, I., Lasiecka, I.: Long-Time Behavior of Second-Order Evolutions with Nonlinear Damping. Memoires of AMS, vol. 195 (2008)

    Google Scholar 

  17. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  18. Chueshov, I., Eller, M., Lasiecka, I.: Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Commun. Partial Differ. Equ. 29, 1847–1976 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chueshov, I., Lasiecka, I., Toundykov, D.: Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent. J. Dyn. Differ. Equ. 21, 269–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Masson, Paris (1994)

    MATH  Google Scholar 

  21. Favini, A., Lasiecka, I., Horn, M.A., Tataru, D.: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation. J. Differ. Equ. 9, 267–294 (1996). 10, 197–200, (1997)

    MathSciNet  MATH  Google Scholar 

  22. Geredeli, P.G., Lasiecka, I., Webster, J.T.: Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer. J. Differ. Equ. 254, 1193–1229 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haraux, A., Jendoubi, M.A.: Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26, 21–36 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Haraux, A., Jendoubi, M.A.: The Lojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework. J. Funct. Anal. 260, 2826–2842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hassen, I.B., Haraux, A.: Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy. J. Funct. Anal. 260, 2933–2963 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hörmander, L.: Linear Partial Differential Operators. Die Grundlehren der mathematischen Wissenschaften, vol. 116. Academic Press, New York (1963)

    Book  MATH  Google Scholar 

  27. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J. Differ. Equ. 247(4), 1120–1155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, J.R.: Global attractor for an extensible beam equation with localized nonlinear damping and linear memory. Math. Methods Appl. Sci. (2011). doi:10.1002/mma.1450

    Google Scholar 

  30. Khanmamedov, A.Kh.: Global attractors for von Karman equations with non-linear dissipation. J. Math. Anal. Appl. 318, 92–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khanmamedov, A.Kh.: Global attractors for the plate equation with a localized damping and critical exponent in an unbounded domain. J. Differ. Equ. 225(2), 528–548 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim, J.U.: Exact semi-internal control of an Euler-Bernoulli equation. SIAM J. Control 30(5), 1001–1023 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koch, H., Lasiecka, I.: Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems. In: Evolution Equations, Semigroup and Functional Analysis, vol. 50, pp. 197–212. Birkhäuser, Basel (2002)

    Chapter  Google Scholar 

  34. Kostin, I.N.: Rate of attraction to a non-hyperbolic attractor. Asymptot. Anal. 16, 203–222 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  36. Lasiecka, I.: Mathematical Control Theory of Coupled PDE’s. CMBS-NSF Lecture Notes. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  37. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, M.C., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 4. Elsevier, Amsterdam (2008)

    Google Scholar 

  38. Pazy, A.: Semigroups of Linear Operators and Applications to PDE, p. 76. Springer, New York (1986)

    Google Scholar 

  39. Raugel, G.: Global attractors in partial differential equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2. Elsevier, Amsterdam (2002)

    Google Scholar 

  40. Ruiz, A.: Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl. 710, 455–467 (1992)

    Google Scholar 

  41. Sakamoto, R.: Mixed problems for hyperbolic equations. J. Math. Kyoto Univ. 2, 349–373 (1970)

    MathSciNet  Google Scholar 

  42. Showalter, R.E.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, vol. 49. AMS, Providence (1997)

    Google Scholar 

  43. Tataru, D.: Unique continuation for solutions to PDE’s between Hörmander’s theorem and Holmgren’s theorem. Commun. Partial Differ. Equ. 20(5–6), 855–884 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  45. Tucsnak, M.: Semi-internal stabilization for a nonlinear Bernoulli Euler equation. Math. Methods Appl. Sci. 19, 897–907 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, D., Zhang, J.: Boundary stabilization of a more general Kirchoff-type beam equation. Int. J. Mod. Nonlinear Theory Appl. 1, 97–101 (2012)

    Article  Google Scholar 

  47. Yassine, H.: Asymptotic behavior and decay rates estimates for a class of semi linear evolution equations of mixed order. Nonlinear Anal. 74(6), 2309–2326 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Justin Webster was partially supported by NASA’s Virginia Space Grant Consortium Graduate Research Fellowship NNX10AT94H, 2011–2013.

The authors would like to thank the anonymous referee for the valuable feedback which improved the clarity and content of the treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin T. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geredeli, P.G., Webster, J.T. Decay Rates to Equilibrium for Nonlinear Plate Equations with Degenerate, Geometrically-Constrained Damping. Appl Math Optim 68, 361–390 (2013). https://doi.org/10.1007/s00245-013-9210-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-013-9210-8

Keywords

Navigation