Applied Mathematics & Optimization

, Volume 68, Issue 3, pp 361–390 | Cite as

Decay Rates to Equilibrium for Nonlinear Plate Equations with Degenerate, Geometrically-Constrained Damping



We analyze the convergence to equilibrium of solutions to the nonlinear Berger plate evolution equation in the presence of localized interior damping (also referred to as geometrically constrained damping). Utilizing the results in (Geredeli et al. in J. Differ. Equ. 254:1193–1229, 2013), we have that any trajectory converges to the set of stationary points \(\mathcal{N}\). Employing standard assumptions from the theory of nonlinear unstable dynamics on the set \(\mathcal{N}\), we obtain the rate of convergence to an equilibrium. The critical issue in the proof of convergence to equilibria is a unique continuation property (which we prove for the Berger evolution) that provides a gradient structure for the dynamics. We also consider the more involved von Karman evolution, and show that the same results hold assuming a unique continuation property for solutions, which is presently a challenging open problem.


Nonlinear plate equations Attractors Geometrically constrained damping Unique continuation Convergence to equilibrium 



Justin Webster was partially supported by NASA’s Virginia Space Grant Consortium Graduate Research Fellowship NNX10AT94H, 2011–2013.

The authors would like to thank the anonymous referee for the valuable feedback which improved the clarity and content of the treatment.


  1. 1.
    Aloui, F., Hassen, I.B., Haraux, A.: Compactness of trajectories to some nonlinear second order evolution equations and applications. J. Math. Pures Appl. (2013, in press) Google Scholar
  2. 2.
    Babin, A.: Global attractors in PDE. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1B. Elsevier, Amsterdam (2006) Google Scholar
  3. 3.
    Babin, A., Vishik, M.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992) MATHGoogle Scholar
  4. 4.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Groningen (1976) CrossRefMATHGoogle Scholar
  5. 5.
    Berger, H.M.: A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465–472 (1955) MathSciNetMATHGoogle Scholar
  6. 6.
    Bucci, F., Toundykov, D.: Finite dimensional attractor for a composite system of wave/plate equations with localized damping. Nonlinearity 23, 2271–2306 (2010) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Charao, R.C., Bisognin, E., Bisognin, V., Pazoto, A.F.: Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping. Prog. Nonlinear Differ. Equ. Appl. 66, 67–91 (2005) MathSciNetGoogle Scholar
  8. 8.
    Cherrier, P., Milani, A.: Parabolic equations of von Karman type on Kähler manifolds, II. Bull. Sci. Math. 133(2), 113–133 (2009) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chill, R., Jendoubi, M.A.: Convergence to steady states in asymptotically autonomous semilinear evolution equations. Nonlinear Anal. 53, 1017–1039 (2003) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chill, R., Haraux, A., Jendoubi, M.A.: Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations. Anal. Appl. 7, 351–372 (2009) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Acta Press, Kharkov (1999) (in Russian). English translation: Acta Press, Kharkov (2002). MATHGoogle Scholar
  12. 12.
    Chueshov, I.: Convergence of solutions of von Karman evolution equations to equilibria. Appl. Anal. 91(9) 1699–1715 (2012) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chueshov, I., Lasiecka, I.: Global attractors for von Karman evolutions with a nonlinear boundary dissipation. J. Differ. Equ. 198, 196–231 (2004) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chueshov, I., Lasiecka, I.: Attractors for second-order evolution equations with a nonlinear damping. J. Dyn. Differ. Equ. 16(2), 469–512 (2004) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chueshov, I., Lasiecka, I.: Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping. J. Differ. Equ. 233, 42–86 (2007) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chueshov, I., Lasiecka, I.: Long-Time Behavior of Second-Order Evolutions with Nonlinear Damping. Memoires of AMS, vol. 195 (2008) Google Scholar
  17. 17.
    Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Springer, Berlin (2010) CrossRefMATHGoogle Scholar
  18. 18.
    Chueshov, I., Eller, M., Lasiecka, I.: Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Commun. Partial Differ. Equ. 29, 1847–1976 (2004) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Chueshov, I., Lasiecka, I., Toundykov, D.: Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent. J. Dyn. Differ. Equ. 21, 269–314 (2009) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Masson, Paris (1994) MATHGoogle Scholar
  21. 21.
    Favini, A., Lasiecka, I., Horn, M.A., Tataru, D.: Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation. J. Differ. Equ. 9, 267–294 (1996). 10, 197–200, (1997) MathSciNetMATHGoogle Scholar
  22. 22.
    Geredeli, P.G., Lasiecka, I., Webster, J.T.: Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer. J. Differ. Equ. 254, 1193–1229 (2013) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Haraux, A., Jendoubi, M.A.: Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26, 21–36 (2001) MathSciNetMATHGoogle Scholar
  24. 24.
    Haraux, A., Jendoubi, M.A.: The Lojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework. J. Funct. Anal. 260, 2826–2842 (2011) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hassen, I.B., Haraux, A.: Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy. J. Funct. Anal. 260, 2933–2963 (2011) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hörmander, L.: Linear Partial Differential Operators. Die Grundlehren der mathematischen Wissenschaften, vol. 116. Academic Press, New York (1963) CrossRefMATHGoogle Scholar
  27. 27.
    Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, Berlin (2006) MATHGoogle Scholar
  28. 28.
    Kalantarov, V., Zelik, S.: Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J. Differ. Equ. 247(4), 1120–1155 (2009) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kang, J.R.: Global attractor for an extensible beam equation with localized nonlinear damping and linear memory. Math. Methods Appl. Sci. (2011). doi: 10.1002/mma.1450 Google Scholar
  30. 30.
    Khanmamedov, A.Kh.: Global attractors for von Karman equations with non-linear dissipation. J. Math. Anal. Appl. 318, 92–101 (2006) MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Khanmamedov, A.Kh.: Global attractors for the plate equation with a localized damping and critical exponent in an unbounded domain. J. Differ. Equ. 225(2), 528–548 (2006) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kim, J.U.: Exact semi-internal control of an Euler-Bernoulli equation. SIAM J. Control 30(5), 1001–1023 (1992) MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Koch, H., Lasiecka, I.: Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems. In: Evolution Equations, Semigroup and Functional Analysis, vol. 50, pp. 197–212. Birkhäuser, Basel (2002) CrossRefGoogle Scholar
  34. 34.
    Kostin, I.N.: Rate of attraction to a non-hyperbolic attractor. Asymptot. Anal. 16, 203–222 (1998) MathSciNetMATHGoogle Scholar
  35. 35.
    Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989) CrossRefMATHGoogle Scholar
  36. 36.
    Lasiecka, I.: Mathematical Control Theory of Coupled PDE’s. CMBS-NSF Lecture Notes. SIAM, Philadelphia (2002) CrossRefGoogle Scholar
  37. 37.
    Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, M.C., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 4. Elsevier, Amsterdam (2008) Google Scholar
  38. 38.
    Pazy, A.: Semigroups of Linear Operators and Applications to PDE, p. 76. Springer, New York (1986) Google Scholar
  39. 39.
    Raugel, G.: Global attractors in partial differential equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2. Elsevier, Amsterdam (2002) Google Scholar
  40. 40.
    Ruiz, A.: Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl. 710, 455–467 (1992) Google Scholar
  41. 41.
    Sakamoto, R.: Mixed problems for hyperbolic equations. J. Math. Kyoto Univ. 2, 349–373 (1970) MathSciNetGoogle Scholar
  42. 42.
    Showalter, R.E.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, vol. 49. AMS, Providence (1997) Google Scholar
  43. 43.
    Tataru, D.: Unique continuation for solutions to PDE’s between Hörmander’s theorem and Holmgren’s theorem. Commun. Partial Differ. Equ. 20(5–6), 855–884 (1995) MathSciNetMATHGoogle Scholar
  44. 44.
    Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (1988) CrossRefMATHGoogle Scholar
  45. 45.
    Tucsnak, M.: Semi-internal stabilization for a nonlinear Bernoulli Euler equation. Math. Methods Appl. Sci. 19, 897–907 (1996) MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wang, D., Zhang, J.: Boundary stabilization of a more general Kirchoff-type beam equation. Int. J. Mod. Nonlinear Theory Appl. 1, 97–101 (2012) CrossRefGoogle Scholar
  47. 47.
    Yassine, H.: Asymptotic behavior and decay rates estimates for a class of semi linear evolution equations of mixed order. Nonlinear Anal. 74(6), 2309–2326 (2011) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Hacettepe UniversityAnkaraTurkey
  2. 2.Oregon State UniversityCorvallisUSA

Personalised recommendations