Skip to main content
Log in

Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  3. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadelphia (1999). Revised and updated 2nd edn.

    MATH  Google Scholar 

  4. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences, Springfield (2007)

    MATH  Google Scholar 

  6. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  7. Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and Their Inequalities. Reidel, Dordrecht (1988)

    MATH  Google Scholar 

  8. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67, 315–344 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988)

    Google Scholar 

  11. Filippov, V.V.: Basic Topological Structures of Ordinary Differential Equations. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  12. Freeman, R.A., Kokotović, P.V.: Robust Nonlinear Control Design: State Space and Lyapunov Techniques. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  13. Fry, R., McManus, S.: Smooth bump functions and the geometry of Banach spaces. Expo. Math. 20, 143–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halmos, P.R.: Measure Theory. Springer, New York (1974)

    MATH  Google Scholar 

  15. Hwang, I., Tomlin, C.J.: Protocol-based conflict resolution for air traffic control. Technical Report, SUDAAR-762, Department of Aeronautics and Astronautics, Stanford University (2002)

  16. Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Dover, New York (1975)

    Google Scholar 

  17. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Applications. Academic Press, New York (1969)

    MATH  Google Scholar 

  18. Leitmann, G.: Deterministic control of uncertain systems. Acta Astronaut. 7, 1457–1461 (1980)

    Article  MATH  Google Scholar 

  19. Leitmann, G.: Guaranteed avoidance strategies. J. Optim. Theory Appl. 32, 569–576 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leitmann, G.: The Calculus of Variations and Optimal Control: An Introduction. Plenum, New York (1981)

    MATH  Google Scholar 

  21. Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl. 23, 581–591 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leitmann, G., Skowronski, J.: A note on avoidance control. Optim. Control Appl. Methods 4, 335–342 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic, Norwell (1998)

    Book  Google Scholar 

  24. Mitchell, I., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50, 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  25. Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin (1970). With P.M. Vasić

    MATH  Google Scholar 

  26. Stipanović, D.M., Sriram, Tomlin, C.J.: Strategies for agents in multi-player pursuit-evasion games. In: Proceedings of the Eleventh International Symposium on Dynamic Games and Applications, Tucson, Arizona (2004)

    Google Scholar 

  27. Stipanović, D.M., Hokayem, P.F., Spong, M.W., Šiljak, D.D.: Cooperative avoidance control for multi-agent systems. J. Dyn. Syst. Meas. Control 129, 699–707 (2007)

    Article  Google Scholar 

  28. Stipanović, D.M., Melikyan, A., Hovakimyan, N.: Some sufficient conditions for multi-player pursuit-evasion games with continuous and discrete observations. Annals of Dynamic. Games 10, 133–145 (2009)

    Google Scholar 

  29. Stipanović, D.M., Melikyan, A., Hovakimyan, N.: Guaranteed strategies for nonlinear multi-player pursuit-evasion games. Int. Game Theory Rev. 12(1), 1–17 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vaisbord, E.M., Zhukovskiy, V.I.: Introduction to Multi-Player Differential Games and Their Applications. Gordon & Breach, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan M. Stipanović.

Additional information

This work was supported in part by the National Science Foundation under grant CMMI 08-25677 and in part by the ONR (HUNT) grant N00014-08-1-0696 and the AFOSR (MURI) grant FA9550-06-1-0312.

Appendix A

Appendix A

In the Appendix we provide proofs for Theorems 1 and 2.

1.1 A.1 Proof of Theorem 1

First, the values of the minimum approximation functions (1) and (2) can be written as

$$ \everymath{\displaystyle} \begin{array}{lll} \underline{\sigma}(\delta,a) &=& \frac{a_m}{\sqrt[\delta]{1+\sum_{i \ne m} (a_m/a_i)^\delta}},\\[6pt] \overline{\sigma}(\delta,a) &=& \frac{a_m \sqrt[\delta]{N}}{\sqrt[\delta]{1+\sum_{i\ne m}(a_m/a_i)^\delta}}. \end{array} $$
(36)

Now note that the following is true:

$$ \lim_{\delta \to +\infty } \sqrt[\delta]{1+\sum_{i=1}^N c_i^\delta}=1\quad \hbox{if}\ \bigl(\forall i \in \mathbf{N}\bigr) \bigl(c_i \in [0,1]\bigr) $$
(37)

because

$$1\le \sqrt[\delta]{1+\sum_{i=1}^N c_i^\delta} \le \sqrt[\delta]{1+N}\quad \hbox{if}\ (\forall i\in \mathbf{N}) \bigl(c_i \in [0,1]\bigr), $$

and

$$\lim_{\delta \to +\infty} \sqrt[\delta]{1+N}=1\quad \hbox{for any positive integer}\ N. $$

Since a m /a i ≤1 for all iN, N≥1+∑ im (a m /a i )δ, and by using (37), we conclude that (6) and inequalities \(\underline{\sigma}_{a}(\delta) < a_{m} \le \overline{\sigma}_{a}(\delta)\) for any finite δ>0 are valid. In addition, the minimum approximation functions behave well for any finite positive δ when the minimum approaches zero, that is, (7) which is a direct consequence of (36).

To complete the proof we need to show that \(\underline{\sigma}_{a}(\delta)\) increases with δ and that \(\overline{\sigma}_{a}(\delta)\) does not increase with δ. In order to do so, we use some results on inequalities related to means provided in [25] and also in [6, 7]. It is important to note that some historical facts related to derivations of results involving inequalities for means can be found on p. 77 in [25]. Therefore, we recall the function in [25] defined by

$$ f(\lambda)= \Biggl(\sum_{i=1}^N k_i a_i^\lambda \Biggr)^{1/\lambda} $$
(38)

where all parameters k i and a i for all iN are given positive numbers and λ∈ℝ∖{0}. Now, let us define f(0)=lim λ→0 f(λ) and using Bernoulli’s result on computing limits (more commonly known as L’Hospital’s rule), we obtain:

(39)

Then combining (38) and (39), f(λ) is defined for all λ∈ℝ. When λ≠0 we compute the derivative of f(λ) as

(40)

Next notice that

$$ \underline{\sigma}_a(\delta)=f_1(-\delta),\quad \delta >0 $$
(41)

with

$$ f_1(\cdot)\equiv f(\cdot)|_{k_1=k_2=\ldots=k_N=1} $$
(42)

where ≡ and (⋅) are used to denote that the two functions are equal, and \(f(\cdot)|_{k_{1}=k_{2}=\cdots=k_{N}=1}\) denotes function f(⋅) when the parameter values are set to k 1=k 2=⋯=k N =1. Now we proceed by computing

(43)

which implies

$$ \frac{d \underline{\sigma}_a(\delta)}{d \delta} = \frac{f_1(-\delta)}{\delta^2(\sum_{i=1}^N a_i^{-\delta})} \Biggl(\sum_{i=1}^N a_i^{-\delta} \Biggl(\ln\Biggl(\sum_{j=1}^N a_j^{-\delta}\Biggr) - \ln\bigl(a_i^{-\delta}\bigr) \Biggr) \Biggr). $$
(44)

Since ln(y) increases with y∈ℝ+, we conclude that \(d \underline{\sigma}_{a}(\delta)/d \delta>0\), that is, \(\underline{\sigma}_{a}(\delta)\) is strictly increasing with δ∈ℝ+.

At this point, let us compute λ 2 f′(λ)/f(λ) [25] for λ≠0 and denote this expression by F(λ) which is well defined for all λ∈ℝ since

$$ F(\lambda) =\lambda \frac{\sum_{i=1}^N k_i a_i^\lambda \ln(a_i)}{\sum_{i=1}^N k_i a_i^\lambda} - \ln \Biggl(\sum_{i=1}^N k_i a_i^\lambda\Biggr). $$
(45)

Notice that, since f(λ)>0, F(λ) and f′(λ) have the same sign when λ≠0. Now, F′(λ)=dF(λ)/ can be computed as

(46)

Let \(d_{i}(\lambda)=k_{i} a_{i}^{\lambda}\), e i =ln(a i ), and \(F'(\lambda)=\lambda A(\lambda) (\sum_{i=1}^{N} k_{i} a_{i}^{\lambda})^{-2}\) where

(47)

From (46) and (47) it follows that F(λ) is nondecreasing when λ>0 and is nonincreasing when λ<0. Thus,

$$ F(0)=-\ln \Biggl(\sum_{i=1}^N k_i \Biggr) $$
(48)

is the minimum of F(λ), λ∈ℝ. Then, related to the \(\overline{\sigma}_{a}(\delta)\) case, that is, when k i =1/N implies \(\sum_{i=1}^{N} k_{i} =1\), we obtain that F(0)=0. Therefore, F(λ)≥0 when λ≠0 and F(0)=0. This implies f′(λ)=f(λ)F(λ)/λ 2≥0 for λ≠0. In addition notice that

$$ \overline{\sigma}_a(\delta)=f_2(-\delta),\quad \delta >0 $$
(49)

where

$$ f_2(\cdot)\equiv f(\cdot)|_{k_1=k_2=\cdots=k_N=1/N}. $$
(50)

Finally,

$$ \frac{d \overline{\sigma}_a(\delta)}{d \delta} = \frac{df_2(\lambda)}{d\lambda} \frac{d\lambda}{d \delta} = -\frac{d f_2(\lambda)}{d\lambda} $$
(51)

implies that \(\overline{\sigma}_{a}(\delta)\) is nonincreasing for δ∈ℝ+.  □

1.2 A.2 Proof of Theorem 2

First note that the values of the approximation functions (8) and (9) can be rewritten as

$$ \everymath{\displaystyle} \begin{array}{lll} \underline{\rho} (\delta,a) &=& a_M{\frac{\sqrt[\delta]{1+\sum_{i \ne M} (a_i/a_M)^\delta}}{\sqrt[\delta]{N}}}, \\[12pt] \overline{\rho} (\delta,a) &=& a_M \sqrt[\delta]{1+\sum_{i\ne M}(a_i/a_M)^\delta}. \end{array} $$
(52)

Using (37), the fact that a i /a M ≤1 for all iN, and N≥1+∑ iM (a i /a M )δ, we conclude that (13) and \(\underline{\rho}_{a} (\delta) \le a_{M} < \overline{\rho}_{a} (\delta)\), δ∈ℝ+, are both valid.

Now, note that \(\underline{\rho}_{a}(\cdot) \equiv f(\cdot)|_{k_{1}=\cdots=k_{N}=1/N}\) implies

$$ \frac{d \underline{\rho}_a(\delta)}{d \delta} = \frac{d f (\delta)}{d\delta}\bigg|_{k_1=\cdots=k_N=1/N} $$
(53)

and therefore \(d \underline{\rho}_{a} (\delta)/d \delta >0\) so that \(\underline{\rho}_{a} (\delta)\) is nondecreasing for δ∈ℝ+. Also notice that \(\overline{\rho}_{a}(\cdot) \equiv f(\cdot)|_{k_{1}=\cdots=k_{N}=1}\) which implies

$$ \frac{d \overline{\rho}_a(\delta)}{d \delta} = \frac{d f (\delta)}{d\delta}\bigg|_{k_1=\cdots=k_N=1}. $$
(54)

In addition, note that

$$ \sum_{i=1}^N a_i^\lambda \ln \bigl(a_i^\lambda\bigr) - \sum_{i=1}^N a_i^\lambda \ln \Biggl(\sum_{j=1}^N a_j^\lambda\Biggr)= \sum_{i=1}^N a_i^\lambda \ln \biggl( \frac{a_i^\lambda}{\sum_{j=1}^N a_j^\lambda} \biggr) <0 $$
(55)

for any \(a=[a_{1},\ldots,a_{N}]^{T} \in \mathbb{R}^{N}_{+}\). This implies that \(d \overline{\rho}_{a} (\delta) /d \delta <0\) so that \(\overline{\rho}_{a} (\delta)\) is decreasing for δ∈ℝ+.  □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stipanović, D.M., Tomlin, C.J. & Leitmann, G. Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems. Appl Math Optim 66, 455–473 (2012). https://doi.org/10.1007/s00245-012-9179-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-012-9179-8

Keywords

Navigation