Alibert, J.-J., Raymond, J.-P.: Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3–4, 235–250 (1997)
MathSciNet
Article
Google Scholar
Amann, H.: Linear and Quasilinear Parabolic Problems. Birkhäuser, Basel (1995)
MATH
Book
Google Scholar
Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.-J., et al. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., vol. 133, pp. 9–126. Teubner, Stuttgart (1993)
Google Scholar
Amann, H., Escher, J.: Strongly continuous dual semigroups. Ann. Mat. Pura Appl. 171, 41–62 (1996)
MathSciNet
MATH
Article
Google Scholar
Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: L
p-Maximal regularity for nonautonomous evolution equations. J. Differ. Equ. 237(1), 1–26 (2007)
MathSciNet
MATH
Article
Google Scholar
Arrieta, J.M., Quittner, P., Rodríguez-Bernal, A.: Parabolic problems with nonlinear dynamical boundary conditions and singular initial data. Differ. Integral Equ. 14(12), 1487–1510 (2001)
MATH
Google Scholar
Bandle, C., von Below, J., Reichel, W.: Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 17(1), 35–67 (2006)
MathSciNet
MATH
Article
Google Scholar
Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. SIAM J. Sci. Stat. Comput. 4(3), 416–435 (1983)
MathSciNet
MATH
Article
Google Scholar
von Below, J., De Coster, C.: A qualitative theory for parabolic problems under dynamical boundary conditions. J. Inequal. Appl. 5(5), 467–486 (2000)
MathSciNet
MATH
Google Scholar
Berezanskij, Y.M.: Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables. Translations of Mathematical Monographs, vol. 63. Am. Math. Soc., Providence (1986)
MATH
Google Scholar
Bonnans, J.F.: Second-order analysis for control constrained optimal control problems of semillinear elliptic equations. Appl. Math. Optim. 38, 303–325 (1998)
MathSciNet
MATH
Article
Google Scholar
Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)
MathSciNet
MATH
Article
Google Scholar
Casas, E., de los Reyes, J., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19, 616–643 (2008)
MathSciNet
MATH
Article
Google Scholar
Casas, E., Tröltzsch, F., Unger, A.: Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38, 1369–1391 (2000)
MathSciNet
MATH
Article
Google Scholar
Cialdea, A., Maz’ya, V.: Criterion for the L
p-dissipativity of second order differential operators with complex coefficients. J. Math. Pures Appl. 84(8), 1067–1100 (2005)
MathSciNet
MATH
Google Scholar
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North Holland, Amsterdam (1978)
MATH
Book
Google Scholar
Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)
Google Scholar
Denk, R., Hieber, M., Prüss, J.: \({\mathcal{R}}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788 (2003)
de Los Reyes, J.C., Merino, P., Rehberg, J., Tröltzsch, F.: Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybern. 37(1), 5–38 (2008)
MATH
Google Scholar
de Simon, L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazione differenziali lineari astratte del primo ordine. Rend. Semin. Mat. Univ. Padova 34, 205–223 (1964)
MATH
Google Scholar
Dore, G.: L
p regularity for abstract differential equations. In: Komatsu, H. (ed.) Proceedings of the International Conference in Memory of Professor Kosaku Yosida held at RIMS on Functional Analysis and Related Topics, Kyoto University, Japan, July 29–August 2, 1991. Lect. Notes Math., vol. 1540, pp. 25–38. Springer, Berlin (1993)
Google Scholar
Duderstadt, F., Hömberg, D., Khludnev, A.M.: A mathematical model for impulse resistance welding. Math. Methods Appl. Sci. 26, 717–737 (2003)
MathSciNet
MATH
Article
Google Scholar
Dunford, N., Schwartz, J.T., Bade, W.G., Bartle, R.G.: Linear Operators. I. General Theory. Pure and Applied Mathematics, vol. 6. Interscience, New York (1958)
MATH
Google Scholar
Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial Differ. Equ. 18(7–8), 1309–1364 (1993)
MathSciNet
MATH
Article
Google Scholar
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)
MATH
Google Scholar
Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation with generalized Wentzell boundary condition. J. Evol. Equ. 2(1), 1–19 (2002)
MathSciNet
MATH
Article
Google Scholar
Fuhrmann, J., Langmach, H.: Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws. Appl. Numer. Math. 37(1–2), 201–230 (2001)
MathSciNet
MATH
Article
Google Scholar
Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)
MATH
Article
Google Scholar
Gajewski, H.: Analysis und Numerik von Ladungstransport in Halbleitern. Mitt. Ges. Angew. Math. Mech. 16(1), 35–57 (1993)
MathSciNet
Google Scholar
Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie Verlag, Berlin (1974)
MATH
Google Scholar
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)
MATH
Book
Google Scholar
Goldberg, H., Tröltzsch, F.: Second order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31(4), 1007–1025 (1993)
MathSciNet
MATH
Article
Google Scholar
Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11(4), 457–480 (2006)
MATH
Google Scholar
Griepentrog, J.A., Kaiser, H.-C., Rehberg, J.: Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on L
p. Adv. Math. Sci. Appl. 11, 87–112 (2001)
MathSciNet
MATH
Google Scholar
Griepentrog, J.A., Recke, L.: Linear elliptic boundary value problems with non-smooth data: normal solvability on Sobolev-Campanato spaces. Math. Nachr. 225, 39–74 (2001)
MathSciNet
MATH
Article
Google Scholar
Griepentrog, J.A.: Linear elliptic boundary value problems with non-smooth data: Campanato spaces of functionals. Math. Nachr. 243, 19–42 (2002)
MathSciNet
MATH
Article
Google Scholar
Gröger, K.: Private communication (1998)
Gröger, K.: A W
1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283, 679–687 (1989)
MathSciNet
MATH
Article
Google Scholar
Haller-Dintelmann, R., Rehberg, J.: Coercivity for elliptic operators and positivity of solutions on Lipschitz domains. Arch. Math. 95, 457–468 (2010)
MathSciNet
MATH
Article
Google Scholar
Haller-Dintelmann, R., Rehberg, J.: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equ. 247(5), 1354–1396 (2009)
MathSciNet
MATH
Article
Google Scholar
Haller-Dintelmann, R., Meyer, C., Rehberg, J., Schiela, A.: Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60(3), 397–428 (2009)
MathSciNet
MATH
Article
Google Scholar
Hille, E., Phillips, R.S.: Functional analysis and semi-groups. American Mathematical Society Colloquium Publications, vol. 31, pp. 1001–1009. American Mathematical Society, Providence (1957)
Google Scholar
Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc. R. Soc. Edinb., Sect. A, Math. 113(1–2), 43–60 (1989)
MathSciNet
MATH
Article
Google Scholar
Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1980). Reprint of the corr. print. of the 2nd edn.
MATH
Google Scholar
Lamberton, D.: Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces L
p. J. Funct. Anal. 72, 252–262 (1987)
MathSciNet
MATH
Article
Google Scholar
Langer, R.E.: A problem in diffusion or in the flow of heat for a solid in contact with a fluid. Tohoku Math. J. 35, 260–275 (1932)
Google Scholar
Lions, J.L.: Optimal control of systems governed by partial differential equations. In: Die Grundlehren der mathematischen Wissenschaften, vol. 170. Springer, Berlin (1971)
Google Scholar
Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Equations. Birkhäuser, Basel (1995)
Book
Google Scholar
Marcus, M., Mizel, V.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33, 217–229 (1979)
MathSciNet
MATH
Article
Google Scholar
Ouhabaz, E.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)
MATH
Google Scholar
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)
MATH
Book
Google Scholar
Raymond, J.P., Tröltzsch, F.: Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst. 6, 431–450 (2000)
MATH
Article
Google Scholar
Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)
MATH
Google Scholar
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
MATH
Google Scholar
Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)
Google Scholar
Triebel, H.: On spaces of \(B^{s}_{\infty,q}\) and C
s type. Math. Nachr. 85, 75–90 (1978)
MathSciNet
MATH
Article
Google Scholar
Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Am. Math. Soc., Providence (2010)
MATH
Google Scholar
Vogt, H., Voigt, J.: Wentzell boundary conditions in the context of Dirichlet forms. Adv. Differ. Equ. 8(7), 821–842 (2003)
MathSciNet
MATH
Google Scholar