Applied Mathematics & Optimization

, Volume 66, Issue 3, pp 309–330 | Cite as

Snell Envelope with Small Probability Criteria

Article

Abstract

We present a new algorithm to compute the Snell envelope in the specific case where the criteria to optimize is associated with a small probability or a rare event. This new approach combines the Stochastic Mesh approach of Broadie and Glasserman with a particle approximation scheme based on a specific change of measure designed to concentrate the computational effort in regions pointed out by the criteria. The theoretical analysis of this new algorithm provides non asymptotic convergence estimates. Finally, the numerical tests confirm the practical interest of this approach.

Keywords

Snell envelope American option Bermudan option Stochastic mesh Particle methods Rare events 

References

  1. 1.
    Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104, 43–60 (1996) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations: II. Approximation of the density. Monte Carlo Methods Appl. 2, 93–128 (1996) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Broadie, M., Glasserman, P.: A stochastic mesh method for pricing high-dimensional American options. J. Comput. Finance 7, 35–72 (2004) Google Scholar
  4. 4.
    Carmona, R., Fouque, J.-P., Vestal, D.: Interacting particle systems for the computation of rare credit portfolio losses. Finance Stoch. 13(4), 613–633 (2009). MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Carmona, R., Moral, P., Hu, P., Oudjane, N. (eds.): Numerical Methods in Finance. Springer Proceedings in Mathematics, vol. 12. Springer, Berlin (2012) MATHGoogle Scholar
  6. 6.
    Carmona, R., Del Moral, P., Hu, P., Oudjane, N.: An introduction to particle methods with financial applications. In: Numerical Methods in Finance. Springer Proceedings in Mathematics, vol. 12, pp. 3–50. Springer, Berlin (2012) CrossRefGoogle Scholar
  7. 7.
    Cérou, F., Del Moral, P., Guyader, A.: A nonasymptotic variance theorem for unnormalized Feynman-Kac particle models. Ann. Inst. Henri Poincaré (B) 47(3) (2011) Google Scholar
  8. 8.
    Del Moral, P.: Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications. Springer, New York (2004) MATHGoogle Scholar
  9. 9.
    Del Moral, P., Garnier, J.: Genealogical particle analysis of rare events. Ann. Appl. Probab. 15, 2496–2534 (2005) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Del Moral, P., Hu, P., Oudjane, N., Rémillard, B.: On the robustness of the Snell envelope. SIAM J. Financ. Math. 2, 587–626 (2011) MATHCrossRefGoogle Scholar
  11. 11.
    Liu, G., Hong, L.J.: Revisit of stochastic mesh method for pricing American options. Oper. Res. Lett. 37(6), 411–414 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre INRIA Bordeaux et Sud-Ouest & Institut de Mathématiques de BordeauxUniversité de Bordeaux ITalence cedexFrance
  2. 2.EDF R&D ClamartClamartFrance
  3. 3.Université 13 and FiME (Laboratoire de Finance des Marchés de l’Energie (Dauphine, CREST, EDF R&D))ParisFrance

Personalised recommendations