Skip to main content
Log in

Decay of Solutions to Damped Korteweg–de Vries Type Equation

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In the present paper we establish results concerning the decay of the energy related to the damped Korteweg–de Vries equation posed on infinite domains. We prove the exponential decay rates of the energy when a initial value problem and a localized dissipative mechanism are in place. If this mechanism is effective in the whole line, we get a similar result in H k-level, k∈ℕ. In addition, the decay of the energy regarding a initial boundary value problem posed on the right half-line, is obtained considering convenient a smallness condition on the initial data but a more general dissipative effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bona, J.L., Sun, S.M., Zhang, B.-Y.: Forced oscillations of a damped Korteweg–de Vries equation in a quarter plane. Commun. Contemp. Math. 5, 369–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bubnov, B.A.: Solvability in the large of nonlinear boundary-value problems for the Korteweg–de Vries equation in a bounded domain. Differ. Uravn. (Minsk) 16, 34–41 (1980). English transl. in Differ. Equ. 16, 24–30 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A., Natali, F.: Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization. J. Differ. Equ. 248(12), 2955–2971 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Natali, F.: Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping. Differ. Integral Equ. 22(7–8), 617–636 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Colliander, J.L., Kenig, C.E.: The generalized Korteweg–de Vries equation on the half line. Commun. Partial Differ. Equ. 27, 2187–2266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faminskii, A.V.: Cauchy problem for the Korteweg–de Vries equation and its generalizations. Tr. Semin. Im. I.G. Petrovskogo 13, 56–105 (1988). English transl. in J. Soviet Math. 50, 1381–1420 (1990)

    Google Scholar 

  7. Faminskii, A.V.: A mixed problem in a half-strip for the Korteweg–de Vries equation and its generalizations. Tr. Mosk. Mat. Obŝ. 52, 54–94 (1988). English transl. in Trans. Moscow Math. Soc. 51, 53–91 (1989)

    Google Scholar 

  8. Faminskii, A.V.: An initial boundary-value problem in a half-strip for the Korteweg–de Vries equation in fractional-order Sobolev spaces. Commun. Partial Differ. Equ. 29, 1653–1695 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faminskii, A.V., Larkin, N.A.: Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Elec. J. Diff. Equations, 1–20 (2010)

  10. Faminskii, A.V., Larkin, N.A.: Odd order evolution equations posed on a bounded interval. Bol. Soc. Parana. Mat. 28, 67–77 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Goubet, O., Shen, J.: On the dual Petrov–Galerkin formulation of the KdV equation. Adv. Differ. Equ. 12, 221–239 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Hyayashi, N., Kaikina, E., Zavala, J.G.: On the boundary-value problem for the Korteweg–de Vries equation. Proc. R. Soc., Math. Phys. Eng. Sci. 459, 2861–2884 (2003)

    Article  Google Scholar 

  13. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg–de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–560 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Komornik, V., Russel, D.L., Zhang, B.-Y.: Stabilization de l’equation de Korteweg–de Vries. C. R. Acad. Sci., Ser. 1 Math. 312, 841–843 (1991)

    MATH  Google Scholar 

  16. Komornik, V.: On the stabilization of the Korteweg–de Vries equation. Bol. Soc. Parana. Mat. (3) 28(2), 33–48 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Kruzhkov, S.N., Faminskii, A.V.: Generalized solutions of the Cauchy problem for the Korteweg–de Vries equation. Mat. Sb. 120, 396–425 (1983). English transl. in Sb. Math. 48, 391–421 (1984)

    MathSciNet  Google Scholar 

  18. Larkin, N.A.: Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains. J. Math. Anal. Appl. 297, 169–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Larkin, N.A.: Modified KdV equation with a source term in a bounded domain. Math. Methods Appl. Sci. 29, 751–765 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laurent, C., Rosier, L., Zhang, B.-Y.: Control and stabilization of the Korteweg–de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35, 707–744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Linares, F., Pazoto, A.F.: On the exponential decay of the critical generalized Korteweg–de Vries equation with localized damping. Proc. Am. Math. Soc. 135, 1515–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Linares, F., Pazoto, A.F.: Asymptotic behavior of the Korteweg–de Vries equation posed in a quarter plane. J. Differ. Equ. 246, 1342–1353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.L.: Quelques méthodes de reésolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    Google Scholar 

  24. Littman, W.: Near optimal time boundary controllability for a class of hyperbolic equations. In: Control Problems for Systems Described by PDE’s and Applications. Lecture Notes in Control and Information Sciences, vol. 97, pp. 307–313. Springer, Berlin (1987)

    Chapter  Google Scholar 

  25. Menzala, G.P., Vasconcellos, C.F., Zuazua, E.: Stabilization of the Korteweg–de Vries equation with localized damping. Q. Appl. Math. 60, 111–129 (2002)

    MATH  Google Scholar 

  26. Pazoto, A.F.: Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM Control Optim. Calc. Var. 11, 473–486 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pazoto, A.F., Rosier, L.: Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete Contin. Dyn. Syst., Ser. B 14, 1511–1535 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosier, L., Zhang, B.Y.: Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J. Control Optim. 3, 927–956 (2006)

    Article  MathSciNet  Google Scholar 

  29. Rosier, L., Zhang, B.-Y.: Control and stabilization of the Korteweg–de Vries equation: recent progresses. J. Syst. Sci. Complex. 22, 647–682 (2009)

    Article  MathSciNet  Google Scholar 

  30. Rosier, L., Zhang, B.-Y.: Exact boundary controllability of the nonlinear Schrödinger equation. J. Differ. Equ. 246, 4129–4155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosier, L., Zhang, B.-Y.: Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded domain. SIAM J. Control Optim. 48, 972–992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosier, L., Zhang, B.-Y.: Control and stabilization of the nonlinear Schrödinger equation on rectangles. Math. Models Methods Appl. Sci. 20, 2293–2347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Russell, D.L., Zhang, B.-Y.: Exact controllability and stabilizability of the Korteweg–de Vries equation. Trans. Am. Math. Soc. 348, 3643–3672 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66, 118–139 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shananin, N.A.: Partial quasianalyticity of distribution solutions of weakly nonlinear differential equations with weights assigned to derivatives. Mat. Zametki 68, 608–619 (2000). English transl. in Math. Notes 68, 519–527 (2000)

    MathSciNet  Google Scholar 

  36. Zhang, B.-Y.: Unique continuation for the Korteweg–de Vries Equation. SIAM J. Math. Anal. 23, 55–71 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15, 205–235 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zuazua, E.: Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. Cavalcanti.

Additional information

Research of M.M. Cavalcanti partially supported by the CNPq, grant 300631/2003-0.

Research of V.N. Domingos Cavalcanti partially supported by the CNPq, grant 304895/2003-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, M.M., Domingos Cavalcanti, V.N., Faminskii, A. et al. Decay of Solutions to Damped Korteweg–de Vries Type Equation. Appl Math Optim 65, 221–251 (2012). https://doi.org/10.1007/s00245-011-9156-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-011-9156-7

Keywords

Navigation