Skip to main content

Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions

Abstract

This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this threshold value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.

This is a preview of subscription content, access via your institution.

References

  1. Afrouzi, G.A.: Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions. Int. J. Math. Math. Sci. 30(1), 25–29 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Afrouzi, G.A., Brown, K.J.: On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions. Proc. Am. Math. Soc. 127(1), 125–130 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  4. Belgacem, F.: Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications. Pitman Research Notes in Mathematics, vol. 368. Longman, Harlow (1997)

    MATH  Google Scholar 

  5. Bôcher, M.: The smallest characteristic numbers in a certain exceptional case. Bull. Am. Math. Soc. 21(1), 6–9 (1914)

    Article  MATH  Google Scholar 

  6. Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. R. Soc. Edinb. A 112(3–4), 293–318 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments, II. SIAM J. Math. Anal. 22(4), 1043–1064 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cantrell, R.S., Cosner, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29(4), 315–338 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    MATH  Google Scholar 

  10. Conca, C., Mahadevan, R., Sanz, L.: Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball. In: CANUM 2008, ESAIM Proc., vol. 27, pp. 311–321. EDP Sci., Les Ulis (2009)

    Google Scholar 

  11. Cox, S.: The two phase drum with the deepest bass note. Jpn. J. Ind. Appl. Math. 8, 345–355 (1991)

    Article  MATH  Google Scholar 

  12. Cox, S., McLaughlin, J.: Extremal eigenvalue problems for composite membranes i and ii. Appl. Math. Optim. 22, 153–167 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fleming, W.H.: A selection-migration model in population genetics. J. Math. Biol. 2(3), 219–233 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman, Boston (1985)

    MATH  Google Scholar 

  15. He, L., Kao, C.-Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225, 891–909 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hess, P., Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. Commun. Partial Differ. Equ. 5(10), 999–1030 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kao, C.Y., Su, S.: An efficient rearrangement algorithm for shape optimization on eigenvalue problems. In: IMA Workshop on Numerical Solutions of Partial Differential Equations: Fast Solution Techniques (2010)

    Google Scholar 

  18. Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5(2), 315–335 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Transl. Am. Math. Soc. 1(2), 163–187 (1955)

    MathSciNet  Google Scholar 

  20. Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23(3), 275–292 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Osher, J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints i. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Saut, J.-C., Scheurer, B.: Remarks on a non-linear equation arising in population genetics. Commun. Partial Differ. Equ. 3(10), 907–931 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    MATH  MathSciNet  Google Scholar 

  24. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992). Shape sensitivity analysis

    Book  MATH  Google Scholar 

  26. Su, S.: Numerical approaches on shape optimization of elliptic eigenvalue problems and shape study of human brains. Ph.D. thesis, The Ohio State University (2010)

    Google Scholar 

  27. Wayne, A.: Inequalities and inversions of order. Scr. Math. 12(2), 164–169 (1946)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laurain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hintermüller, M., Kao, CY. & Laurain, A. Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions. Appl Math Optim 65, 111–146 (2012). https://doi.org/10.1007/s00245-011-9153-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-011-9153-x

Keywords

  • Asymptotic analysis
  • Principal eigenvalue
  • Elliptic boundary value problem with indefinite weight
  • Robin conditions
  • Shape optimization