Skip to main content
Log in

An Excursion-Theoretic Approach to Stability of Discrete-Time Stochastic Hybrid Systems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We address stability of a class of Markovian discrete-time stochastic hybrid systems. This class of systems is characterized by the state-space of the system being partitioned into a safe or target set and its exterior, and the dynamics of the system being different in each domain. We give conditions for L 1-boundedness of Lyapunov functions based on certain negative drift conditions outside the target set, together with some more minor assumptions. We then apply our results to a wide class of randomly switched systems (or iterated function systems), for which we give conditions for global asymptotic stability almost surely and in L 1. The systems need not be time-homogeneous, and our results apply to certain systems for which functional-analytic or martingale-based estimates are difficult or impossible to get.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. arXiv:0803.3042 (2008)

  2. Barnsley, M.F., Demko, S.G., Elton, J.H., Geronimo, J.S.: Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Ann. Ins. Henri Poincaré Probab. Stat. 24(3), 367–394 (1988). Erratum in ibid. 24(4), 589–590 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete-Time Case. Mathematics in Science and Engineering, vol. 139. Academic Press, San Diego (1978)

    MATH  Google Scholar 

  4. Borkar, V.S.: Topics in Controlled Markov Chains. Pitman Research Notes in Mathematics Series, vol. 240. Longman, Harlow (1991)

    MATH  Google Scholar 

  5. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. J. ACM 48(1), 13–38 (2001)

    MathSciNet  Google Scholar 

  6. Chatterjee, D., Cinquemani, E., Chaloulos, G., Lygeros, J.: Stochastic control up to a hitting time: optimality and rolling-horizon implementation. arXiv:0806.3008 (2008)

  7. Chatterjee, D., Hokayem, P., Lygeros, J.: Stochastic receding horizon control with bounded control inputs: a vector space approach. arXiv:0903.5444 (2009)

  8. Chow, Y.S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin, Boston (1971)

    MATH  Google Scholar 

  9. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Probability and Its Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41(1), 45–76 (1999) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  11. Douc, R., Fort, G., Moulines, E., Soulier, P.: Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14(3), 1353–1377 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Foss, S., Konstantopoulos, T.: An overview of some stochastic stability methods. J. Oper. Res. Soc. Jpn. 47(4), 275–303 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Håstad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for multiple access channels. SIAM J. Comput. 25(4), 740–774 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hernández-Lerma, O., Lasserre, J.B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Applications of Mathematics, vol. 30. Springer, New York (1996)

    Google Scholar 

  15. Hernández-Lerma, O., Lasserre, J.B.: Further Topics on Discrete-Time Markov Control Processes. Applications of Mathematics, vol. 42. Springer, New York (1999)

    MATH  Google Scholar 

  16. Hobson, D.G.: Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8(1), 193–205 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jahnke, T., Huisinga, W.: Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54(1), 1–26 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jarner, S.F., Tweedie, R.L.: Locally contracting iterated functions and stability of Markov chains. J. Appl. Probab. 38(2), 494–507 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jiang, Z.-P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37(6), 857–869 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics. Springer, Berlin (1991)

    MATH  Google Scholar 

  21. Kifer, Y.: Ergodic Theory of Random Transformations. Progress in Probability and Statistics, vol. 10. Birkhäuser, Boston (1986)

    MATH  Google Scholar 

  22. Liberzon, D.: Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkhäuser, Boston (2003)

    Google Scholar 

  23. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise, 2nd edn. Applied Mathematical Sciences, vol. 97. Springer, New York (1994)

    MATH  Google Scholar 

  24. Lasota, A., Myjak, J.: On a dimension of measures. Pol. Acad. Sci. Bull. Math. 50(2), 221–235 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Lasota, A., Szarek, T.: Dimension of measures invariant with respect to the Ważewska partial differential equation. J. Differ. Equ. 196(2), 448–465 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2001)

    MATH  Google Scholar 

  27. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  28. Pemantle, R., Rosenthal, J.S.: Moment conditions for a sequence with negative drift to be uniformly bounded in L r. Stoch. Process. Appl. 82(1), 143–155 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Peskir, G., Shiryaev, A.N.: Optimal Stopping and Free-Boundary Problems. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2006)

    Google Scholar 

  30. Szarek, T.: Feller processes on nonlocally compact spaces. Ann. Probab. 34(5), 1849–1863 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol. 251. Springer, Berlin (2000)

    MATH  Google Scholar 

  32. Werner, I.: Contractive Markov systems. J. Lond. Math. Soc. 71(1), 236–258 (2005)

    Article  MATH  Google Scholar 

  33. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC Mathematical and Computational Biology Series. Chapman & Hall/CRC, London/Boca Raton (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Chatterjee.

Additional information

Debasish Chatterjee’s research is partially supported by the Swiss National Science foundation grant 200021-122072.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, D., Pal, S. An Excursion-Theoretic Approach to Stability of Discrete-Time Stochastic Hybrid Systems. Appl Math Optim 63, 217–237 (2011). https://doi.org/10.1007/s00245-010-9117-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-010-9117-6

Keywords

Navigation