Skip to main content
Log in

Shadowing and the Viability Kernel Algorithm

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

The aim of this paper is to derive estimates for the accuracy of the Viability Kernel Algorithm for systems which have shadowing properties. Recently developed shadowing results are applied in order to prove for a certain class of right hand sides that the algorithm has the same convergence properties as fully discretized numerical methods on a finite time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E.: Simplicial Dynamical Systems. Memoirs of the Amer. Math. Soc., vol. 667. Am. Math. Soc., Providence (1999)

    Google Scholar 

  2. Aubin, J.-P.: Viability Theory. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  3. Aubin, J.-P., Bayen, A., Saint-Pierre, P.: A viability approach to Hamilton-Jacobi equations: application to concave highway traffic flux functions. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, pp. 3519–3524 (2005)

  4. Aubin, J.P., Cellina, A.: Differential Inclusions. Grundlehren der mathematischen Wissenschaften, vol. 264. Springer, Berlin (1984)

    MATH  Google Scholar 

  5. Bayen, A., Claudel, C., Saint-Pierre, P.: Viability-based computations of solutions to the Hamilton-Jacobi-Bellman equation. Lect. Notes Comput. Sci. 4416, 645–649 (2007)

    Article  MathSciNet  Google Scholar 

  6. Beyn, W.-J., Rieger, J.: Numerical fixed grid methods for differential inclusions. Computing 81(1), 91–106 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonneuil, N.: Making ecosystem models viable. Bull. Math. Biol. 65, 1081–1094 (2003)

    Article  Google Scholar 

  8. Bonneuil, N., Saint-Pierre, P.: Protected polymorphism in the two-locus haploid model with unpredictable fitnesses. J. Math. Biol. 40(3), 251–277 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonneuil, N., Saint-Pierre, P.: Population viability in three trophic-level food chains. Appl. Math. Comput. 169(2), 1086–1105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruckner, T., Hooss, G., Füssel, H.-M., Hasselmann, K.: Climate system modeling in the framework of the tolerable windows approach: The ICLIPS climate model. Clim. Change 56, 119–137 (2003)

    Article  Google Scholar 

  11. Crück, E., Saint-Pierre, P.: Nonlinear impulse target problems under state constraint: A numerical analysis based on viability theory. Set-Valued Anal. 12, 383–416 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75, 293–317 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donchev, T., Farkhi, E.: Stability and Euler approximation of one-sided Lipschitz differential inclusions. SIAM J. Control Optim. 36(2), 780–796 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donchev, T., Farkhi, E., Reich, S.: Fixed set iterations for relaxed Lipschitz multimaps. Nonlinear Anal. 53, 997–1015 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frankowska, H., Quincampoix, M.: Viability kernels of differential inclusions with constraints: Algorithm and applications. J. Math. Syst. Estim. Control 1(3), 371–388 (1991)

    MathSciNet  Google Scholar 

  16. Glavan, V., Gutu, V.: On the dynamics of contracting relations. In: Analysis and Optimization of Differential Systems, pp. 179–188. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  17. Grammel, G.: Towards fully discretized differential inclusions. Set-Valued Anal. 11, 1–8 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Palmer, K.: Shadowing in Dynamical Systems. Theory and Applications. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  19. Pilyugin, S.Y., Rieger, J.: Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case. Topol. Methods Nonlinear. Anal. 32(1), 139–150 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Pilyugin, S.Y., Rieger, J.: Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case. Topol. Methods Nonlinear. Anal. 32(1), 151–164 (2008)

    MATH  MathSciNet  Google Scholar 

  21. Pilyugin, S.Y., Rieger, J.: A general approach to hyperbolicity for set-valued maps. J. Math. Sci. (2009, accepted)

  22. Pilyugin, S.Yu.: Shadowing in Dynamical Systems. Lect. Notes Math., vol. 1706. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Saint-Pierre, P.: Approximation of the viability kernel. Appl. Math. Optim. 29, 187–209 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sander, E.: Hyperbolic sets for noninvertible maps and relations. Discrete Contin. Dyn. Syst. 5(2), 339–357 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janosch Rieger.

Additional information

Supported by the Hausdorff Research Institute for Mathematics, Bonn, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieger, J. Shadowing and the Viability Kernel Algorithm. Appl Math Optim 60, 429–441 (2009). https://doi.org/10.1007/s00245-009-9083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-009-9083-z

Keywords

Navigation