Skip to main content
Log in

Assessing Performance of Wastewater Treatment Using in Vitro Cell-based Assays

  • Original Paper
  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Bioanalytical tools, namely in vitro bioassays, can be employed in tandem with chemical analyses to assess the efficacy of wastewater treatment and the potential for adverse effects from the discharges of wastewater into receiving waters. In the present study, samples of untreated wastewater (i.e., influent) and treated wastewater (i.e., effluent) were collected from two wastewater treatment plants and a wastewater treatment lagoon to investigate potential differences in treatment performance. In addition, grab samples of surface water were collected downstream of the lagoon discharge to evaluate the water quality in the receiving stream. After solid-phase extraction (SPE) using ion exchange columns for basic/neutral and acidic compounds, respectively, the extracts were analyzed for a suite of 16 indicator compounds. The two SPE extracts were combined for analysis of biological responses in four in vitro cell-based bioassays. The concentrations of several indicator compounds, including the estrogens, 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), were below the limits of detection. However, androstenedione and estrone were detected in several influent samples. The concentrations of these steroid hormones and some of the other indicator compounds declined during treatment, but acesulfame K, carbamazepine, trimethoprim and DEET persisted in the effluent. The MTS-CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) indicated that cell viability was not affected by exposure to the extracts. The Qiagen Nuclear Receptors 10-Pathway Reporter Array indicated that several cellular pathways were upregulated, with the greatest upregulation observed with the estrogen receptor (i.e., induction ratios of 12 to 47) and the liver X receptor (i.e., induction ratios of 10 to 45). The ERα CALUX assay indicated that estrogenic activity was lower in effluents compared to influents, but the expected improved removal of estrogenic activity during nitrification was not observed. The results of the Nrf2 Luciferase Luminescence Assay indicated a lower oxidative stress in the effluent samples, except for the lagoon. Overall, the present study further demonstrates that bioassays provide complementary information to chemical analyses and offer a way to assess treatment performance, even when target contaminants are not detected. There are thus advantages to using a combination of chemical analyses and in vitro bioassays to monitor the treatment efficiency of wastewater treatment plants and to predict the potential impacts of wastewater discharges into receiving waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Additional details on the data is available on demand.

Code availability

Not applicable.

References

  • Baalbaki Z, Sultana T, Metcalfe C, Yargeau V (2017) Estimating removals of contaminants of emerging concern from wastewater treatment plants: the critical role of wastewater hydrodynamics. Chemosphere 178:439–448

    Article  CAS  Google Scholar 

  • Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci 83(8):2496–2500

    Article  CAS  Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Treguer RJ, Magruder C, Royer LS, Klaper RD (2013) Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci Total Environ 444:515–521

    Article  CAS  Google Scholar 

  • Brand W,de Jongh C, Puijkera L, van Leeuwen C, van Wezel A, Schriks M, Heringa M, van der Linden S, Mennes W (2014) Establishment of trigger values and validation of bioassay panel, BioDetection Systems bv (DEMEAU project)

  • Brand W, de Jongh CM, van der Linden SC, Mennes W, Puijker LM, van Leeuwen CJ, van Wezel AP, Schriks M, Heringa MB (2013) Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays. Environ Int 55:109–118

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart MA, Garcı́a-Jares C, Rodrı́guez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12): 2918–2926

  • Chamorro-Garcia R, Kirchner S, Li X, Janesick A, Casey SC, Chow C, Blumberg B (2012) Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism. Environ Health Perspect 120(7):984–989

    Article  CAS  Google Scholar 

  • Desvergne B, Feige JN, Casals-Casas C (2009) PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol 304(1–2):43–48

    Article  CAS  Google Scholar 

  • Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689

    Article  CAS  Google Scholar 

  • Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR, Kumar A, Grimaldi M, Jayasinghe BS, Jarosova B, Jia A, Makarov S, Maruya KA, Medvedev A, Mehinto AC, Mendez JE, Poulsen A, Prochazka E, Richard J, Schifferli A, Schlenk D, Scholz S, Shiraishi F, Snyder S, Su G, Tang JY, Burg BV, Linden SC, Werner I, Westerheide SD, Wong CK, Yang M, Yeung BH, Zhang X, Leusch FD (2014) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48(3):1940–1956

    Article  CAS  Google Scholar 

  • Escher BI, Dutt M, Maylin E, Tang JY, Toze S, Wolf CR, Lang M (2012) Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway. J Environ Monit 14(11):2877–2885

    Article  CAS  Google Scholar 

  • Escher BI, Leusch FD (2012) Bioanalytical tools in water quality assessment. IWA Publishing, London

    Google Scholar 

  • European Commission (2012) Proposal for a Directive of the European parliament and of the council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy (last Accessed May 6, 2020); https://ec.europa.eu/smart-regulation/impact/ia_carried_out/docs/ia_2012/com_2011_0876_en.pdf

  • Gage MC, Pourcet B, Pineda-Torra I (2016) Luciferase reporter assays to assess liver X receptor transcriptional activity. lipid signaling protocols. M. G. Waugh. New York, NY, Springer New York, pp 77–85

  • Gijsbers L, Man HY, Kloet SK, de Haan LH, Keijer J, Rietjens IM, van der Burg B, Aarts JM (2011) Stable reporter cell lines for peroxisome proliferator-activated receptor gamma (PPARgamma)-mediated modulation of gene expression. Anal Biochem 414(1):77–83

    Article  CAS  Google Scholar 

  • Jia A, Escher BI, Leusch FD, Tang JY, Prochazka E, Dong B, Snyder EM, Snyder SA (2015) In vitro bioassays to evaluate complex chemical mixtures in recycled water. Water Res 80:1–11

    Article  CAS  Google Scholar 

  • Kase R, Javurkova B, Simon E, Swart K, Buchinger S, Könemann S, Escher BI, Carere M, Dulio V, Ait-Aissa S, Hollert H, Valsecchi S, Polesello S, Behnisch P, di Paolo C, Olbrich D, Sychrova E, Gundlach M, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tusil P, Soldan P, von Danwitz B, Schwaiger J, Palao AM, Bersani F, Perceval O, Kienle C, Vermeirssen E, Hilscherova K, Reifferscheid G, Werner I (2018) Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC Trends Anal Chem 102:343–358

    Article  CAS  Google Scholar 

  • Khanal SK, Xie B, Thompson ML, Sung S, Ong SK, Van Leeuwent J (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40(21):6537–6546

    Article  CAS  Google Scholar 

  • Kittler R, Zhou J, Hua S, Ma L, Liu Y, Pendleton E, Cheng C, Gerstein M, White KP (2013) A comprehensive nuclear receptor network for breast cancer cells. Cell Rep 3(2):538–551

    Article  CAS  Google Scholar 

  • Kolkman A, Schriks M, Brand W, Bauerlein PS, van der Kooi MM, van Doorn RH, Emke E, Reus AA, van der Linden SC, de Voogt P, Heringa MB (2013) Sample preparation for combined chemical analysis and in vitro bioassay application in water quality assessment. Environ Toxicol Pharmacol 36(3):1291–1303

    Article  CAS  Google Scholar 

  • Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, Hollert H, Escher BI, Werner I, Aït-Aïssa S, Vermeirssen E, Dulio V, Valsecchi S, Polesello S, Behnisch P, Javurkova B, Perceval O, Di Paolo C, Olbrich D, Sychrova E, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tušil P, Soldàn P, von Danwitz B, Schwaiger J, San Martín Becares MI, Bersani F, Hilscherová K, Reifferscheid G, Ternes T, Carere M (2018) Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. TrAC Trends Anal Chem 102: 225–235

  • Koyama J, Kitoh A, Nakai M, Kohno K, Tanaka H, Uno S (2013) Relative contribution of endocrine-disrupting chemicals to the estrogenic potency of marine sediments of Osaka Bay, Japan

  • Liu ZH, Lu GN, Yin H, Dang Z, Rittmann B (2015) Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review. Environ Sci Technol 49(9):5288–5300

    Article  CAS  Google Scholar 

  • Marcogliese DJ, Blaise C, Cyr D, de Lafontaine Y, Fournier M, Gagné F, Gagnon C, Hudon C (2015) Effects of a major municipal effluent on the St. Lawrence River: a case study. Ambio 44(4):257–274

    Article  Google Scholar 

  • Martin MT, Dix DJ, Judson RS, Kavlock RJ, Reif DM, Richard AM, Rotroff DM, Romanov S, Medvedev A, Poltoratskaya N, Gambarian M, Moeser M, Makarov SS, Houck KA (2010) Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA’s ToxCast program. Chem Res Toxicol 23(3):578–590

    Article  CAS  Google Scholar 

  • Metcalfe C, Hoque ME, Sultana T, Murray C, Helm P, Kleywegt S (2014) Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers. Environ Sci Process Impacts 16(3):473–481

    Article  CAS  Google Scholar 

  • Metcalfe CD, Kleywegt S, Letcher RJ, Topp E, Wagh P, Trudeau VL, Moon TW (2013) A multi-assay screening approach for assessment of endocrine-active contaminants in wastewater effluent samples. Sci Total Environ 454–455:132–140

    Article  Google Scholar 

  • Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22(12):2881–2889

    Article  CAS  Google Scholar 

  • Neale P, Leusch F, Escher B (2020) Use of effect-based monitoring forthe assessment of risks of low-level mixtures of chemicals in water on man and the environment

  • Ort C, Lawrence MG, Rieckermann J, Joss A (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44(16):6024–6035

    Article  CAS  Google Scholar 

  • Peck M, Gibson RW, Kortenkamp A, Hill EM (2004) Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ Toxicol Chem 23(4):945–952

    Article  CAS  Google Scholar 

  • Quaedackers ME, Van Den Brink CE, Wissink S, Schreurs RH, Gustafsson JA, Van Der Saag PT, Van Der Burg BB (2001) 4-Hydroxytamoxifen trans-represses nuclear factor-kappa B activity in human osteoblastic U2-OS cells through estrogen receptor (ER)alpha, and not through ER beta. Endocrinology 142(3):1156–1166

    Article  CAS  Google Scholar 

  • Ratola N, Cincinelli A, Alves A, Katsoyiannis A (2012) Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J Hazard Mater 239–240:1–18

    Article  Google Scholar 

  • Richardson SD, Ternes TA (2018) Water analysis: emerging contaminants and current issues. Anal Chem 90(1):398–428

    Article  CAS  Google Scholar 

  • Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, Perdu E, Zalko D, Bourguet W, Balaguer P (2011) Peroxisome proliferator-activated receptor gamma is a target for halogenated analogs of bisphenol A. Environ Health Perspect 119(9):1227–1232

    Article  CAS  Google Scholar 

  • Roberts J, Bain PA, Kumar A, Hepplewhite C, Ellis DJ, Christy AG, Beavis SG (2015) Tracking multiple modes of endocrine activity in Australia’s largest inland sewage treatment plant and effluent- receiving environment using a panel of in vitro bioassays. Environ Toxicol Chem 34(10):2271–2281

    Article  CAS  Google Scholar 

  • Rodayan A, Segura PA, Yargeau V (2015) Ozonation of wastewater: removal and transformation products of drugs of abuse. Sci Total Environ (0)

  • Schriks M, van Leerdam JA, van der Linden SC, van der Burg B, van Wezel AP, de Voogt P (2010) High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands. Environ Sci Technol 44(12):4766–4774

    Article  CAS  Google Scholar 

  • Servos MR, Bennie DT, Burnison BK, Jurkovic A, McInnis R, Neheli T, Schnell A, Seto P, Smyth SA, Ternes TA (2005) Distribution of estrogens, 17beta-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 336(1–3):155–170

    Article  CAS  Google Scholar 

  • Smital T, Terzic S, Loncar J, Senta I, Zaja R, Popovic M, Mikac I, Tollefsen KE, Thomas KV, Ahel M (2013) Prioritisation of organic contaminants in a river basin using chemical analyses and bioassays. Environ Sci Pollut Res Int 20(3):1384–1395

    Article  CAS  Google Scholar 

  • Snyder S, Leusch F (2018). In vitro bioassays: current status and future application for water management. Global Water Research Coalition

  • Sonneveld E, Jansen HJ, Riteco JA, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83(1):136–148

    Article  CAS  Google Scholar 

  • Subedi B, Kannan K (2014) Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A. Environ Sci Technol 48(23):13668–13674

    Article  CAS  Google Scholar 

  • Tang JY, Aryal R, Deletic A, Gernjak W, Glenn E, McCarthy D, Escher BI (2013) Toxicity characterization of urban stormwater with bioanalytical tools. Water Res 47(15):5594–5606

    Article  CAS  Google Scholar 

  • Tang JYM, Busetti F, Charrois JWA, Escher BI (2014) Which chemicals drive biological effects in wastewater and recycled water? Water Res 60:289–299

    Article  CAS  Google Scholar 

  • Ternes T (2006) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. Water Intell Online 5

  • van der Linden SC, von Bergh ARM, van Vught-Lussenburg BMA, Jonker LRA, Teunis M, Krul CAM, van der Burg B (2014) Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutation Res/Genet Toxicol Environ Mutagenesis 760:23–32

    Article  Google Scholar 

  • Wang S, Aarts JM, de Haan LH, Argyriou D, Peijnenburg AA, Rietjens IM, Bovee TF (2014) Towards an integrated in vitro strategy for estrogenicity testing. J Appl Toxicol 34(9):1031–1040

    Article  CAS  Google Scholar 

  • Wu S, Jia A, Daniels KD, Park M, Snyder SA (2019) Trace analysis of corticosteroids (CSs) in environmental waters by liquid chromatography-tandem mass spectrometry. Talanta 195:830–840

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded through the Canada–Ontario Agreement on Great Lakes Water Quality and Ecosystem Health. Such support does not indicate endorsement by the Government of Ontario of the contents of this contribution. For their assistance in obtaining samples, the authors would like to thank Shirley Anne Smyth, Quintin Rochfort, Scott Alexander and Steven Teslic from Environment and Climate Change Canada, and all staff at the wastewater treatment plants who made the sampling possible. We also thank Rachel Benoit, Marco Pineda and Linda Taylor for the preparation and chemical analysis of the samples as well as Peter Behnisch and Emiel Felzel at Biodetection Systems (Amsterdam) for their guidance and helpful insights in running the ERα CALUX assay.

Funding

The research was funded through the Canada–Ontario Agreement on Great Lakes Water Quality and Ecosystem Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Yargeau.

Ethics declarations

Conflict of interest

The authors do not have conflicts of interest or competing interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petosa, A.R., Nowierski, M. & Yargeau, V. Assessing Performance of Wastewater Treatment Using in Vitro Cell-based Assays. Arch Environ Contam Toxicol 82, 21–36 (2022). https://doi.org/10.1007/s00244-021-00900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00900-9

Navigation