Skip to main content

A Review of the Effects of the Biopesticides Bacillus thuringiensis Serotypes israelensis (Bti) and kurstaki (Btk) in Amphibians

Abstract

Insecticides are important in agriculture, to reduce human disease, and to decrease the nuisance of biting insects. Despite this, many have the potential for environmental impacts and toxicity in nontarget organisms. We reviewed data on the effects of insecticides based on toxins from Bacillus thuringiensis var. israelensis (Bti) and Bacillus thuringiensis var. kurstaki (Btk) on amphibians. The few peer-reviewed publications that are available for Bti provide variable conclusions, ranging from few observable effects to evidence of acute toxicity at high concentrations. We briefly highlight the current controversies and identify key areas for future investigation.

This is a preview of subscription content, access via your institution.

References

  1. Allgeier S, Frombold B, Mingo V, Brühl CA (2018) European common frog Rana temporaria (Anura: Ranidae) larvae show subcellular responses under field-relevant Bacillus thuringiensis var. israelensis (Bti) exposure levels. Environ Res 162:271–279. https://doi.org/10.1016/j.envres.2018.01.010

    CAS  Article  Google Scholar 

  2. Allgeier S, Friedrich A, Brühl CA (2019) Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Sci Total Environ 686:1173–1184. https://doi.org/10.1016/j.scitotenv.2019.05.3

    CAS  Article  Google Scholar 

  3. Almradi A, Hanzel J, Sedano R, Parker CE, Feagan BG, Ma C, Jairath V (2020) Clinical trials of IL-12/IL-23 inhibitors in inflammatory bowel disease. BioDrugs 34:713–721. https://doi.org/10.1007/s40259-020-00451-w

    CAS  Article  Google Scholar 

  4. Becker N (2003) Ice granules containing endotoxins of microbial agents for the control of mosquito larvae—a new application technique. J Am Mosq Control Assoc 19:63–66

    Google Scholar 

  5. Becker N, Ludwig M (1993) Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. JAMCA 9:221–224. https://doi.org/10.1186/1756-3305-6-297

    CAS  Article  Google Scholar 

  6. Becker N, Lüthy P (2017) Chapter 26—mosquito control with entomopathogenic bacteria in Europe. In: Lacey LA (ed) Microbial control of insect and mite pests, pp 379–392. Academic Press. https://doi.org/10.1016/B978-0-12-803527-6.00026-3

  7. Becker N, Petric D, Zgomba M, Boase C, Madon MB, Dahl C, Kaiser A (2010) Mosquitoes and their control. Springer, Berlin

    Book  Google Scholar 

  8. Ben-Dov E (2014) Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 6(4):1222–1243. https://doi.org/10.3390/toxins6041222

    CAS  Article  Google Scholar 

  9. Ben-Dov E, Nissan G, Pelleg N, Manasherob R, Boussiba S, Zaritsky A (1999) Refined, circular restriction map of the Bacillus thuringiensis subsp. israelensis plasmid carrying the mosquito Larvicidal genes. Plasmid 42(3):186–191. https://doi.org/10.1006/plas.1999.1415

    CAS  Article  Google Scholar 

  10. Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435. https://doi.org/10.1016/j.toxicon.2006.11.022

    CAS  Article  Google Scholar 

  11. Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431. https://doi.org/10.1016/j.ibmb.2011.02.006

    CAS  Article  Google Scholar 

  12. Brühl CA, Després L, Frör O, Patil CD, Poulin B, Tetreau G, Allgeier S (2020) Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. Israelensis (Bti). Sci Total Environ 724:137800. https://doi.org/10.1016/j.scitotenv.2020.137800

    CAS  Article  Google Scholar 

  13. Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, Pigaglio L, Decoppet A, Weicherding J, Savaill M, Munoz-Riviero M, Chaud P, Cadiou B, Ramalli L, Fournier P, Noël H, De Lamballerie X, Paty M, Leparc-Goffart I (2017) Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2017.22.39.17-00647

    Article  Google Scholar 

  14. Casida JE (2012) The greening of pesticide-environment interactions: some personal observations. Environ Health Perspect 120(4):487–493. https://doi.org/10.1289/ehp.1104405

    CAS  Article  Google Scholar 

  15. Coetzee M, Koekemoer LL (2013) Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. Annu Rev Entomol 58(1):393–412. https://doi.org/10.1146/annurev-ento-120811-153628

    CAS  Article  Google Scholar 

  16. Derua YA, Kahindi SC, Mosha FW, Kweka EJ, Atieli HE, Wang X, Zhou G, Lee M-C, Githeko AK, Yan G (2018) Microbial larvicides for mosquito control: impact of long lasting formulations of Bacillus thuringiensis var israelensis and Bacillus sphaericus on non-target organisms in western Kenya highlands. Ecol Evol 8(15):7563–7573. https://doi.org/10.1002/ece3.4250

    Article  Google Scholar 

  17. Eugene SP, Reddy VS, Trinath J (2020) Endoplasmic reticulum stress and intestinal inflammation: a perilous union. Front Immunol 11:543022. https://doi.org/10.3389/fimmu.2020.543022

    CAS  Article  Google Scholar 

  18. Fuentealba A, Dupont A, Hébert C, Berthiaume R, Quezada-García R, Bauce É (2019) Comparing the efficacy of various aerial spraying scenarios using Bacillus thuringiensis to protect trees from spruce budworm defoliation. For Ecol Manag 432:1013–1021. https://doi.org/10.1016/j.foreco.2018.10.034

    Article  Google Scholar 

  19. Goldberg LJ, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles-sergentii, Uranotaenia-unguiculata, Culex-univitattus, Aedes-aegypti and Culexpipiens. Mosq News 37(3):355–361

    Google Scholar 

  20. Gutierrez Y, Ramos GS, Tome HVV, Oliveira EE, Salaro AL (2017) Bti-based insecticide enhances the predatory abilities of the backswimmer Buenoa tarsalis (Hemiptera: Notonectidae). Ecotoxicology 26(8):1147–1155. https://doi.org/10.1007/s10646-017-1840-1

    CAS  Article  Google Scholar 

  21. Gutierrez-Villagomez JM, Martyniuk CJ, Xing L, Langlois VS, Pauli BD, Blais JM, Trudeau VL (2019) Transcriptome analysis reveals that naphthenic acids perturb gene networks related to metabolic processes, membrane integrity, and gut function in Silurana (Xenopus) tropicalis embryos. Front Mar Sci 6:533. https://doi.org/10.3389/fmars.2019.00533

    Article  Google Scholar 

  22. Halasa YA, Shepard DS, Fonseca DM, Farajollahi A, Healy S, Gaugler R, Bartlett-Healy K, Strickman DA, Clark GG (2014) Quantifying the impact of mosquitoes on quality of life and enjoyment of yard and porch activities in New Jersey. PLoS ONE 9:e89221

    Article  Google Scholar 

  23. Hanlon SM, Lynch KJ, Kerby JL, Parris MJ (2015) The effects of a fungicide and chytrid fungus on anuran larvae in aquatic mesocosms. Environ Sci Pollut Res 22(17):12929–12940. https://doi.org/10.1007/s11356-015-4566-8

    CAS  Article  Google Scholar 

  24. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45(1):371–391. https://doi.org/10.1146/annurev.ento.45.1.371

    CAS  Article  Google Scholar 

  25. Hoffman RS, Capel PD, Larson SJ (2000) Comparison of pesticides in eight U.S. urban streams. Environ Toxicol Chem 19(9):2249–2258. https://doi.org/10.1002/etc.5620190915

    CAS  Article  Google Scholar 

  26. Junges CM, Maglianese MI, Lajmanovich RC, Peltzer PM, Attademo AM (2017) Acute toxicity and etho-toxicity of three insecticides used for mosquito control on amphibian tadpoles. Water Air Soil Pollut 228(4):143

    Article  Google Scholar 

  27. Karlson AML, Reutgard M, Garbaras A, Gorokhova E (2018) Isotopic niche reflects stress-induced variability in physiological status. R Soc Open Sci 5(2):171398–171398. https://doi.org/10.1098/rsos.171398

    CAS  Article  Google Scholar 

  28. Kreutzweiser DP, Gringorten JL, Thomas DR, Butcher JT (1996) Functional effects of the bacterial insecticide Bacillus thuringiensis var kurstaki on aquatic microbial communities. Ecotoxicol Environ Saf 33(3):271–280. https://doi.org/10.1006/eesa.1996.0035

    CAS  Article  Google Scholar 

  29. Lajmanovich RC, Junges CM, Cabagna-Zenklusen MC, Attademo AM, Peltzer PM, Maglianese M, Márquez VE, Beccaria AJ (2015) Toxicity of Bacillus thuringiensis var. israelensis in aqueous suspension on the South American common frog Leptodactylus latrans (Anura: Leptodactylidae) tadpoles. Environ Res 136:205–212. https://doi.org/10.1016/j.envres.2014.10.022

    CAS  Article  Google Scholar 

  30. Margalit J (1990) Discovery of Bacillus thuringiensis israelensis. In: de Barjac H, Sutherland DJ (eds) Bacterial control of mosquitoes and black flies. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5967-8_1

  31. National Pesticide Center (1999) DDT (General Fact Sheet). http://npic.orst.edu/factsheets/ddtgen.pdf

  32. Pardo-Lopez L, Soberon M, Bravo A (2013) Bacillus thuringiensis insecticidal threedomain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37(1):3–22. https://doi.org/10.1111/j.1574-6976.2012.00341.x

    CAS  Article  Google Scholar 

  33. Pauley LR, Earl JE, Semlitsch RD (2015) Ecological effects and human use of commercial mosquito insecticides in aquatic communities. J Herpetol 49(1):28–35. https://doi.org/10.1670/13-036

    Article  Google Scholar 

  34. Raimondo S, Pauley TK, Butler L (2003) Potential impacts of Bacillus thuringiensis var. Kurstaki on five salamander species in West Virginia. Northeast Nat 10(1):25–38. https://doi.org/10.2307/3858670

    Article  Google Scholar 

  35. Rukmini V, Reddy CY, Venkateswerlu G (2000) Bacillus thuringiensis crystal deltaendotoxin: role of proteases in the conversion of protoxin to toxin. Biochimie 82:109–116. https://doi.org/10.1016/S0300-9084(00)00355-2

    CAS  Article  Google Scholar 

  36. Schäfer ML, Lundström JO (2014) Efficiency of Bti-based floodwater mosquito control in Sweden—four examples. J Euro Mosq Control Assoc 32:1–8

    Google Scholar 

  37. Schweizer M, Miksch L, Köhler H-R, Triebskorn R (2019) Does Bti (Bacillus thuringiensis var. Israelensis) affect Rana temporaria tadpoles? Ecotoxicol Environ Saf 181:121–129. https://doi.org/10.1016/j.ecoenv.2019.05.080

    CAS  Article  Google Scholar 

  38. Smith DC (1987) Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68:344–350. https://doi.org/10.2307/1939265

    Article  Google Scholar 

  39. Soberon M, Lopez-Diaz JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41:87–93. https://doi.org/10.1016/j.peptides.2012.05.023

    CAS  Article  Google Scholar 

  40. Stapleton DH (2004) Lessons of history? Anti-malaria strategies of the International Health Board and the Rockefeller Foundation from the 1920s to the era of DDT. Public Health Rep 119(2):206–215. https://doi.org/10.1177/003335490411900214

    Article  Google Scholar 

  41. Succo T, Leparc-Goffart I, Ferré JB, Roiz D, Broche B, Maquart M, Noel H, Catelinois O, Entezam F, Caire D, Jourdain F, Esteve-Moussion I, Cochet A, Paupy C, Rousseau C, Paty MC, Golliot F (2016) Autochthonous dengue outbreak in Nîmes, South of France, July to September 2015. Euro Surveil 26:21. https://doi.org/10.2807/1560-7917.ES.2016.21.21.30240

    Article  Google Scholar 

  42. Tetreau G, Banneville AS, Andreeva EA, Brewster AS, Hunter MS, Sierra RG, Teulon J-M, Young ID, Burke N, Grünewald TA, Beaudouin J, Snigireva I, Fernandez-Luna MT, Burt A, Park H-W, Signor L, Bafna JA, Sadir R, Fenel D, Boeri-Erba E, Bacia M, Zala N, Laporte F, Després L, Weik M, Boutet S, Rosenthal M, Coquelle N, Burghammer M, Cascio D, Sawaya MR, Winterhalter M, Gratton E, Gutsche I, Federici B, Pellequer JL, Sauter NK, Colletier J-P (2020) Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nat Commun 11:1153. https://doi.org/10.1038/s41467-020-14894-w

    CAS  Article  Google Scholar 

  43. Trudeau VL, Thomson P, Zhang WS, Reynaud S, Navarro-Martin L, Langlois VS (2020) Agrochemicals disrupt multiple endocrine axes in amphibians. Mol Cell Endocrinol 513:110861. https://doi.org/10.1016/j.mce.2020.110861

    CAS  Article  Google Scholar 

  44. Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111(1):1–12. https://doi.org/10.1016/j.jip.2012.05.001

    CAS  Article  Google Scholar 

  45. Valent BioSciences—Public Health—Valent BioSciences (n.d.). https://www.valentbiosciences.com/publichealth/. Accessed 14 Nov 2020

  46. van den Berg H, Yadav RS, Zaim M (2015) Setting international standards for the management of public health pesticides. PLoS 12(5):e1001824–e1001824. https://doi.org/10.1371/journal.pmed.1001824

    CAS  Article  Google Scholar 

  47. Vinnersten TZP, Lundstrom JO, Petersson E, Landin J (2009) Diving beetle assemblages of flooded wetlands in relation to time, wetland type and Bti-based mosquito control. Hydrobiologia 635(1):189–203. https://doi.org/10.1007/s10750-009-9911-9

    Article  Google Scholar 

  48. Weeks DM, Parris MJ (2020) A Bacillus thuringiensis kurstaki biopesticide does not reduce hatching success or tadpole survival at environmentally relevant concentrations in Southern leopard frogs (Lithobates sphenocephalus). Environ Toxicol Chem 39(1):155–161. https://doi.org/10.1002/etc.4588

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by University of Ottawa and Canada Excellence Research Chairs, Government of Canada.

Funding

This is a mini-review of existing published data, so research funds for laboratory or fieldwork were not required.

Author information

Affiliations

Authors

Contributions

All co-authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Vance L. Trudeau.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Consent to participate

All co-authors participated in the writing of the manuscript

Consent for publication

Not applicable, manuscript under review only

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Empey, M.A., Lefebvre-Raine, M., Gutierrez-Villagomez, J.M. et al. A Review of the Effects of the Biopesticides Bacillus thuringiensis Serotypes israelensis (Bti) and kurstaki (Btk) in Amphibians. Arch Environ Contam Toxicol 80, 789–800 (2021). https://doi.org/10.1007/s00244-021-00842-2

Download citation