Skip to main content
Log in

QuEChERS Approach for the Analysis of Three Fluoroquinolone Antibiotics in Wastewater: Concentration Profiles and Ecological Risk in Two Nigerian Hospital Wastewater Treatment Plants

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Hospital wastewater is regarded as a primary and very important source of antibiotics in the aquatic environment. Studies on the analysis, occurrence, and ecological risk assessment of fluoroquinolone antibiotics in wastewater are still limited in Africa. A quick, easy, cheap, effective, rugged, and safe extraction method was optimized and applied for determination of three fluoroquinolone antibiotics (ciprofloxacin, norfloxacin, and ofloxacin) in wastewater from two Nigerian hospital wastewater treatment plants (WWTPs) and effluent receiving water. Separation, detection, and quantification of target fluoroquinolone antibiotics were performed by high-performance liquid chromatography. Ecological risk of the three fluoroquinolone antibiotics was evaluated for three trophic levels: fish, daphnid, and algae. The method LODs were 4.1 µg L−1, 7.0 µg L−1, and 18.5 µg L−1 for ciprofloxacin, norfloxacin, and ofloxacin, respectively. Satisfactory recoveries and precisions were achieved, in addition to the correlation coefficients of greater than 0.993. Target fluoroquinolones were quantified in influents up to 228 µg L−1 (UCH influent) for ciprofloxacin, 561 µg L−1 (Ijaiye influent) for norfloxacin, and 198 µg L−1 (UCH influent) for ofloxacin. Norfloxacin had the highest concentration (386 µg L−1) in effluent receiving water. All three fluoroquinolones posed low risk to fish, whereas ciprofloxacin and norfloxacin presented moderate risk to daphnid and algae. To the best of our knowledge, this work presents the first data on the occurrence and risk assessment of the target fluoroquinolones in wastewater from Nigerian hospital WWTPs. The findings revealed the importance of developing local and nationwide surveys of fluoroquinolone antibiotics in the Nigerian aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajibola AS, Tisler S, Zwiener C (2020) Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Methods 12:576–586. https://doi.org/10.1039/c9ay02188d

    Article  CAS  Google Scholar 

  • Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    Article  CAS  Google Scholar 

  • Ashfaq M, Khan KN, Rasool S, Mustafa G, Saif-Ur-Rehman M, Nazar MF, Sun Q, Yu C (2016) Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environ Toxicol Pharmacol 42:16–22. https://doi.org/10.1016/j.etap.2015.12.015

    Article  CAS  Google Scholar 

  • Azanu D, Styrishave B, Darko G, Weisser JJ, Abaidoo RC (2018) Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci Total Environ 622–623:293–305. https://doi.org/10.1016/j.scitotenv.2017.11.287

    Article  CAS  Google Scholar 

  • Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. J Chromatogr A 1092:206–215. https://doi.org/10.1016/j.chroma.2005.07.012

    Article  CAS  Google Scholar 

  • Cheng J, Jiang L, Sun T, Tang Y, Du Z, Lee L, Zhao Q (2019) Occurrence, seasonal variation and risk assessment of antibiotics in the surface water of North China. Arch Environ Contam Toxicol 77(1):88–97. https://doi.org/10.1007/s00244-019-00605-0

    Article  CAS  Google Scholar 

  • Dinh QT, Moreau-Guigon E, Labadie P, Alliot F, Teil M, Blanchard M, Eurin J, Chevreuil M (2017) Fate of antibiotics from hospital and domestic sources in a sewage network. Sci Total Environ 575:758–766. https://doi.org/10.1016/j.scitotenv.2016.09.118

    Article  CAS  Google Scholar 

  • Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, Vlyer R, Sundblad-Tonderski K, Stǻlsby-Lundborg C (2010) Antibiotics and antibiotic resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10:414–422

    Article  Google Scholar 

  • European Commission (2003) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances, part II, Brussels, Belgium

  • European Union (2018) Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495

  • Faleye AC, Adegoke AA, Ramluckan K, Fick J, Bux F, Stenström TA (2019) Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Sci Total Environ 678:10–20. https://doi.org/10.1016/j.scitotenv.2019.04.410

    Article  CAS  Google Scholar 

  • Felis E, Kalka J, Sochacki A, Kowalska K, Bajkacz S, Harnisz M, Korzeniewska E (2020) Antimicrobial pharmaceuticals in the aquatic environment: occurrence and environmental implications. Eur J Pharmacol 866:172813. https://doi.org/10.1016/j.ejphar.2019.172813

    Article  CAS  Google Scholar 

  • Fowotade A, Fasuyi T, Aigbovo O, Versporten A, Adekanmbi O, Akinyemi O, Goossens H, Kehinde A, Oduyebo O (2020) Point prevalence survey of antimicrobial prescribing in a Nigerian hospital: findings and implications of antimicrobial resistance. West Afr J Med 37(3):216–220

    CAS  Google Scholar 

  • Gezahegn T, Tegegne B, Zewge F, Chandravanshi BS (2019) Salting-out assisted liquid–liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography–diode array detector. BMC Chem 13(28):1–10. https://doi.org/10.1186/s13065-019-0543-5

    Article  CAS  Google Scholar 

  • Guo C, Wang M, Xiao H, Huai B, Wang F, Pan G, Liao X, Liu Y (2016) Development of a modified QuEChERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry. J Chromatogr B 1027:110–118. https://doi.org/10.1016/j.jchromb.2016.05.034

    Article  CAS  Google Scholar 

  • Hamad B (2010) The antibiotics market. Nat Rev Drug Discovery 9:675–676. https://doi.org/10.1038/nrd3267

    Article  CAS  Google Scholar 

  • Hamjinda NS, Chiemchaisri W, Watanabe T, Honda R, Chiemchaisri C (2018) Toxicological assessment of hospital wastewater in different treatment processes. Environ Sci Pollut Res 25(6):7271–7279. https://doi.org/10.1007/s11356-015-4812-0

    Article  CAS  Google Scholar 

  • Hartmann A, Golet EM, Gartiser S, Alder AC, Koller T, Widmer RM (1999) Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Arch Environ Contam Toxicol 36:115–119

    Article  CAS  Google Scholar 

  • Herrera-Herrera AV, Hernandez-Borges F, Borges-Miquel TM, Rodrίguez-Delgado MA (2013) Dispersive liquid–liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples. J Pharm Biomed Anal 75:130–137. https://doi.org/10.1016/j.jpba.2012.11.026

    Article  CAS  Google Scholar 

  • Iatrou EI, Stasinakis AS, Thomaidis NS (2014) Consumption-based approach for predicting environmental risk in Greece due to the presence of antimicrobials in domestic wastewater. Environ Sci Pollut Res 21(22):12941–12950. https://doi.org/10.1007/s11356-014-3243-7

    Article  CAS  Google Scholar 

  • Kachhawaha AS, Nagarnaik PM, Jadhav M, Pudale A, Labhasetwar PK, Banerjee K (2017) Optimization of a modified QuEChERS method for multiresidue analysis of pharmaceuticals and personal care products in sewage and surface water by LC-MS/MS. J AOAC Int 100(3):592–597. https://doi.org/10.5740/jaoacint.17-0060

    Article  CAS  Google Scholar 

  • Kimosop SJ, Getenga ZM, Orata F, Okello VA, Cheruiyot JK (2016) Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya. Environ Monitor Assess 188(532):1–10. https://doi.org/10.1007/s10661-016-5534-6

    Article  CAS  Google Scholar 

  • Kleywegt S, Pileggi V, Lam YM, Elises A, Puddicomb A, Purba G, Di Caro J, Fletcher T (2016) The contribution of pharmaceutically active compounds from healthcare facilities to a receiving sewage treatment plant in Canada. Environ Toxicol Chem 35:850–862. https://doi.org/10.1002/etc.3124

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review–part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  Google Scholar 

  • Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infection 9:1203–1214. https://doi.org/10.1111/j.1469-0691.2003.00739.x

    Article  Google Scholar 

  • Lee Y, Choi J, Abd El-Aty AM, Chung HS, Lee HS, Kim S, Rahman MdM, Parkm B, Kim J, Shin H, Shim J (2017) Development of a single-run analytical method for the detection of ten multi-class emerging contaminants in agricultural soil using an acetate-buffered QuEChERS method coupled with LC–MS/MS. J Separation Sci 40(2):415–423. https://doi.org/10.1002/jssc.201600953

    Article  CAS  Google Scholar 

  • Lindberg R, Jarnheimer PA, Olsen B, Johansson M, Tysklind M (2004) Determination of antibiotic substances in hospital sewage water using solid-phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 57:1479–1488. https://doi.org/10.1016/j.chemosphere.2004.09.015

    Article  CAS  Google Scholar 

  • Madikizela LM, Ncube S, Chimuka L (2020) Analysis, occurrence and removal of pharmaceuticals in African water resources: a current status. J Environ Manage 253(109741):1–11. https://doi.org/10.1016/j.jenvman.2019.109741

    Article  CAS  Google Scholar 

  • Martins AF, Vasconcelos TG, Henriques DM, Frank CDS, König A, Kümmerer K (2008) Concentration of ciprofloxacin in Brazilian hospital effluent and preliminary risk assessment: a case study. Clean 36(3):264–269

    CAS  Google Scholar 

  • Mayoudom EVT, Nguidjoe E, Mballa RN, Tankoua OF, Fokunang C, Anyakora C, Blackett KN (2018) Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF. Environ Monitor Assess 190(723):1–10. https://doi.org/10.1007/s10661-018-7097-1

    Article  CAS  Google Scholar 

  • Miao X, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol 38:3533–3541

    Article  CAS  Google Scholar 

  • Mutiyar PK, Mittal AK (2014) Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ Sci Pollut Res 21:7723–7736. https://doi.org/10.1007/s11356-014-2702-5

    Article  CAS  Google Scholar 

  • Nannou C, Ofrydopoulou A, Heath D, Heath E, Lambropoulou D (2019) QuEChERS—a green alternative approach for the determination of pharmaceuticals and personal care products in environmental and food samples. In: Płotka-Wasylka J, Namieśnik J (eds) Green analytical chemistry, green chemistry and sustainable technology. Springer, Singapore, pp 395–430. https://doi.org/10.1007/978-981-13-9105-7_14

    Chapter  Google Scholar 

  • Oduyebo OO, Olayinka AT, Iregbu KC, Versporten A, Goossens H, Nwajiobi-Princewill PI, Jimoh O, Ige TO, Aigbe AI, Ola-Bello OI, Aboderin AO, Ogunsola FT (2017) A point prevalence survey of antimicrobial prescribing in four Nigerian tertiary hospitals. Ann Tropical Pathol 8:42–46. https://doi.org/10.4103/atp.atp_38_17

    Article  Google Scholar 

  • Paíga P, Santos LHMLM, Delerue-Matos C (2017) Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS. J Pharm Biomed Anal 135:75–86. https://doi.org/10.1016/j.jpba.2016.12.013

    Article  CAS  Google Scholar 

  • Perestrelo R, Silva P, Porto-Figueira P, Jorge AM, Pereira JAM, Silva C, Medina S, Cȃmara JS (2019) QuEChERS -fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 1070:1–28. https://doi.org/10.1016/j.aca.2019.02.036

    Article  CAS  Google Scholar 

  • Peysson W, Vulliet E (2013) Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. J Chromatogr A 1290:46–61. https://doi.org/10.1016/j.chroma.2013.03.057

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Vaz-Moreira I, Giustina SVD, Llorca M, Barceló D, Schubert S, Berendonk TU, Michael-Kordatou I, Fatta-Kassinos D, Martinez JL, Elpers C, Henriques I, Jaeger T, Schwartz T, Paulshus E, O’Sullivan K, Pärnänen KMM, Virtam M, Do TT, Walsh F, Manaia CM (2020) Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int 140(105733):1–11. https://doi.org/10.1016/j.envint.2020.105733

    Article  CAS  Google Scholar 

  • Rodrigues-Silva C, Porto RS, dos Santos SG, Schneider J, Rath S (2019) Fluoroquinolones in hospital wastewater: Analytical method, occurrence, treatment with ozone and residual antimicrobial activity evaluation. J Brazilian Chem Soc 30(7):1447–1457. https://doi.org/10.21577/0103-5053.20190040

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395. https://doi.org/10.1016/S0378-4274(03)00257-1

    Article  CAS  Google Scholar 

  • Seifrtová M, Pena A, Lino CM, Solich P (2008) Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal Bioanal Chem 391:799–805. https://doi.org/10.1007/s00216-008-2020-1

    Article  CAS  Google Scholar 

  • Speltini A, Sturini M, Maraschi F, Profumo A (2010) Fluoroquinolone antibiotics in environmental waters: sample preparation and determination. J Sep Sci 33:1115–1131. https://doi.org/10.1002/jssc.200900753

    Article  CAS  Google Scholar 

  • Tay KS, Madehi N (2015) Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment. Sci Total Environ 520:23–31. https://doi.org/10.1016/j.scitotenv.2015.03.033

    Article  CAS  Google Scholar 

  • Turiel E, Bordin G, Rodríguez AR (2005) Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line solid-phase extraction procedures coupled to HPLC-UV. J Sep Sci 28:257–267. https://doi.org/10.1002/jssc.200400018

    Article  CAS  Google Scholar 

  • Umeokonkwo CD, Madubueze UC, Onah CK, Okedo-Alex IN, Adeke AS, Versporten A, Goossens H, Igwe-Okomiso D, Okeke K, Azuogu BN, Onoh R (2019) Point prevalence survey of antimicrobial prescription in a tertiary hospital in South East Nigeria: a call for improved antibiotic stewardship. J Glob Antimicrob Res 17:291–295. https://doi.org/10.1016/j.jgar.2019.01.013

    Article  Google Scholar 

  • Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500–501:250–269. https://doi.org/10.1016/j.scitotenv.2014.08.075

    Article  CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118. https://doi.org/10.1016/j.scitotenv.2012.04.055

    Article  CAS  Google Scholar 

  • Wang Z, Wang Y, Tian H, Wei Q, Liu B, Bao G, Liao M, Peng J, Huang X, Wang L (2019) High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 230:337–346. https://doi.org/10.1016/j.chemosphere.2019.05.047

    Article  CAS  Google Scholar 

  • Zhang J, Liu D, Shi Y, Sun C, Niu M, Wang R, Hu F, Xiao D, He H (2017) Determination of quinolones in wastewater by Porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J Chromatogr B 1068–1069:24–32. https://doi.org/10.1016/j.jchromb.2017.09.046

    Article  CAS  Google Scholar 

  • Zhang W, Sun R, Zhao X, Li Y (2020) Environmental conversion path inference of new designed fluoroquinolones and their potential environmental risk. Arch Environ Contam Toxicol 78(2):310–328. https://doi.org/10.1007/s00244-019-00672-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the effort of Favour O. Ogundele. Officials at the investigated wastewater treatment plants are acknowledged for cooperation and assistance in the collection of wastewater samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinranti S. Ajibola.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajibola, A.S., Amoniyan, O.A., Ekoja, F.O. et al. QuEChERS Approach for the Analysis of Three Fluoroquinolone Antibiotics in Wastewater: Concentration Profiles and Ecological Risk in Two Nigerian Hospital Wastewater Treatment Plants. Arch Environ Contam Toxicol 80, 389–401 (2021). https://doi.org/10.1007/s00244-020-00789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00789-w

Navigation