Skip to main content

Advertisement

Log in

Sources, Enrichment, and Geochemical Fractions of Soil Trace Metals in Ulaanbaatar, Mongolia

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Mongolia is a rapidly developing country that has experienced growing industrialization and urbanization in recent decades. This study was conducted to evaluate the enrichment and labile fractions of metals in urban soils of Mongolia and to identify major sources of soil metal pollution. The concentrations and geochemical fractions of Al, Fe, Mn, Cr, Cu, Cd, Co, Zn, V, Mo, As, Sb, and Pb in soils of the city Ulaanbaatar were investigated. The results demonstrate that only Fe, Mn, Co, Mo, and V occur at natural levels with enrichment factors close to unity. The majority of investigated toxic metals, including Cu, Zn, Cr, Sb, As, Cd, and Pb, are serious pollutants in urban soils, with enrichment factors of up to 2.8, 5.1, 2.1, 16, 13, 15, and 11, respectively. Studies of the chemical fractions of metals demonstrate that Zn is mainly found in its labile form and is considered a high risk to humans and biota. Industrial release, household ash, coal combustion, and tire abrasion were identified as key sources of toxic metals entering into the soil of Ulaanbaatar City, which should be controlled effectively to prevent the population as well as pollution distribution over a wider area by long-range atmospheric transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas Q, Yousaf B, Liu G, Zia-ur-Rehman M, Ali MU, Munir MAM, Hussain SA (2017) Evaluating the health risks of potentially toxic elements through wheat consumption in multi-industrial metropolis of Faisalabad, Pakistan. Environ Sci Pollut Res 24(34):26646–26657

    CAS  Google Scholar 

  • Amarsaikhan D, Battsengel V, Nergui B, Ganzorig M, Bolor G (2014) A study on air pollution in Ulaanbaatar city, Mongolia. J Geosci Environ Protect 2(02):123

    Google Scholar 

  • AQA-UB (2013) Air quality of Ulaanbaatar city and performed works to reduce air pollution (in Mongolian). Air Quality Agency of Ulaanbaatar city, Ulaanbaatar, Mongolia. http://aprd.ub.gov.mn/images/pdf/Nacha_tailan/Nacha_tailan_nom_2013.pdf. Accessed Oct 2019

  • Badarch J, Harding J, Azen C, Ong H, Hunter S, Panaraj P, Davaa S, Sereenendorj T, Szepesi B, Ochir C (2018) Seasonal air pollution strongly inhibits successful conception during winter in Ulaanbaatar, Mongolia. Mongolia (July 23, 2018)

  • Batjargal T, Otgonjargal E, Baek K, Yang J-S (2010) Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J Hazard Mater 184(1):872–876

    CAS  Google Scholar 

  • Batkhuyag EU, Sekito T, Tuuguu E, Dote Y (2016) Characteristics of household waste and coal ash in Ulaanbaatar, Mongolia. In: Proceedings of the 27th annual meeting of the Japan Society of Waste Resource Circulation, p 561

  • Batsaikhan N, Lee J, Nemer B, Woo N (2018) Water resources sustainability of Ulaanbaatar City, Mongolia. Water 10(6):750

    Google Scholar 

  • Battogtokh B, Lee JM, Woo N (2014) Contamination of water and soil by the Erdenet copper–molybdenum mine in Mongolia. Environ Earth Sci 71(8):3363–3374

    CAS  Google Scholar 

  • Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behavioral Res 12(1):43–47

    CAS  Google Scholar 

  • Chen C-W, Kao C-M, Chen C-F, Dong C-D (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66(8):1431–1440

    CAS  Google Scholar 

  • Chen X, Xia X, Zhao Y, Zhang P (2010) Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater 181(1):640–646

    CAS  Google Scholar 

  • Chen Q, Wang M, Sun H, Wang X, Wang Y, Li Y, Zhang L, Mu Z (2018) Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China. Environ Int 121:260–268

    CAS  Google Scholar 

  • Cheng K, Tian HZ, Zhao D, Lu L, Wang Y, Chen J, Liu XG, Jia WX, Huang Z (2014) Atmospheric emission inventory of cadmium from anthropogenic sources. Int J Environ Sci Technol 11(3):605–616

    CAS  Google Scholar 

  • Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488

    Google Scholar 

  • Chung S, Chon H-T (2014) Assessment of the level of mercury contamination from some anthropogenic sources in Ulaanbaatar. Mongolia. J Geochem Explor 147(Part B):237–244

    CAS  Google Scholar 

  • Customs, 2016. Annual report of the Mongolian General Custom Administration

  • Cuvier A, Pourcelot L, Probst A, Prunier J, Le Roux G (2016) Trace elements and Pb isotopes in soils and sediments impacted by uranium mining. Sci Total Environ 566:238–249

    Google Scholar 

  • Dalai B, Ishiga H (2013) Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin, Mongolia. Environ Monit Assess 185(3):2869–2881

    CAS  Google Scholar 

  • Davy PK, Gunchin G, Markwitz A, Trompetter WJ, Barry BJ, Shagjjamba D, Lodoysamba S (2011) Air particulate matter pollution in Ulaanbaatar, Mongolia: determination of composition, source contributions and source locations. Atmos Poll Res 2(2):126–137

    CAS  Google Scholar 

  • Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technol 77(3):287–295

    CAS  Google Scholar 

  • Downard J, Singh A, Bullard R, Jayarathne T, Rathnayake CM, Simmons DL, Wels BR, Spak SN, Peters T, Beardsley D, Stanier CO, Stone EA (2015) Uncontrolled combustion of shredded tires in a landfill—part 1: characterization of gaseous and particulate emissions. Atmos Environ 104:195–204

    CAS  Google Scholar 

  • Filgueiras A, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monitor 4(6):823–857

    CAS  Google Scholar 

  • Ganbat G, Han J-Y, Ryu Y-H, Baik J-J (2013) Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia. Asia-Pacific J Atmos Sci 49(4):535–541

    Google Scholar 

  • Gomes HI, Mayes WM, Rogerson M, Stewart DI, Burke IT (2016) Alkaline residues and the environment: a review of impacts, management practices and opportunities. J Cleaner Prod 112:3571–3582

    CAS  Google Scholar 

  • Guttikunda SK, Lodoysamba S, Bulgansaikhan B, Dashdondog B (2013) Particulate pollution in Ulaanbaatar, Mongolia. Air Qual Atmos Health 6(3):589–601

    CAS  Google Scholar 

  • Hjortenkrans DST, Bergbäck BG, Häggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ Sci Technol 41(15):5224–5230

    CAS  Google Scholar 

  • Hong S, Soyol-Erdene T-O, Hwang HJ, Hong SB, Hur SD, Motoyama H (2012) Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow. Environ Sci Technol 46(21):11550–11557

    CAS  Google Scholar 

  • Hu Y, Cheng H (2016) A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions. Environ Pollut 214:400–409

    CAS  Google Scholar 

  • Huang Y, Li T, Wu C, He Z, Japenga J, Deng M, Yang X (2015) An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. J Hazard Mater 299:540–549

    CAS  Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Ind 48:282–291

    CAS  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 25:333–338

    Google Scholar 

  • Kamata T, Reichert JA, Tsevegmid T, Kim Y, Sedgewick B (2010) Mongolia: enhancing policies and practices for ger area development in Ulaanbaatar. The World Bank, Washington

    Google Scholar 

  • Kasimov NS, Kosheleva NE, Sorokina OI, Bazha SN, Gunin PD, Enkh-Amgalan S (2011) Ecological-geochemical state of soils in Ulaanbaatar (Mongolia). Eurasian Soil Sci 44(7):709–721

    Google Scholar 

  • Ke X, Gui S, Huang H, Zhang H, Wang C, Guo W (2017) Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 175:473–481

    CAS  Google Scholar 

  • Kim H-S, Chung Y-S, Yoon M-B (2016) An analysis on the impact of large-scale transports of dust pollution on air quality in East Asia as observed in central Korea in 2014. Air Qual Atmos Health 9(1):83–93

    CAS  Google Scholar 

  • Kosheleva N, Kasimov N, Dorjgotov D, Bazha S, Golovanov D, Sorokina O, Enkh-Amgalan S (2010) Assessment of heavy metal pollution of soils in industrial cities of Mongolia. Geograph Environ Sustain 3(2):51–65

    Google Scholar 

  • Landner L, Reuther R (2005) Speciation, mobility and bioavailability of metals in the environment. Metals in society and in the environment: a critical review of current knowledge on fluxes, speciation, bioavailability and risk for adverse effects of copper, chromium, nickel and zinc. pp 139–274

  • Lim M, Myagmarchuluun S, Ban H, Hwang Y, Ochir C, Lodoisamba D, Lee K (2018) Characteristics of indoor PM(2.5) concentration in gers using coal stoves in Ulaanbaatar, Mongolia. Int J Environ Res Public Health 15(11):2524

    CAS  Google Scholar 

  • Lin S, Huang K-M, Chen S-K (2000) Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Cont Shelf Res 20(4):619–635

    Google Scholar 

  • Liu J, Zhang X-H, Tran H, Wang D-Q, Zhu Y-N (2011) Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environ Sci Pollut Res 18(9):1623

    CAS  Google Scholar 

  • Llorens J, Fernandez-Turiel J, Querol X (2001) The fate of trace elements in a large coal-fired power plant. Environ Geol 40(4–5):409–416

    CAS  Google Scholar 

  • Lough GC, Schauer JJ, Park J-S, Shafer MM, DeMinter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39(3):826–836

    CAS  Google Scholar 

  • Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    CAS  Google Scholar 

  • Luo X-S, Xue Y, Wang Y-L, Cang L, Xu B, Ding J (2015) Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 127:152–157

    CAS  Google Scholar 

  • Marrugo-Negrete J, Pinedo-Hernández J, Díez S (2017) Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res 154:380–388

    CAS  Google Scholar 

  • Mielke HW, Laidlaw MAS, Gonzales C (2010) Lead (Pb) legacy from vehicle traffic in eight California urbanized areas: continuing influence of lead dust on children’s health. Sci Total Environ 408(19):3965–3975

    CAS  Google Scholar 

  • Naidansuren E, Dondog A, Erdenesaikhan B, Byambanyam E (2017) Heavy metal pollution near a tannery in Ulaanbaatar, Mongolia. J Health Pollut 7(16):2–11

    Google Scholar 

  • Nazarpour A, Watts MJ, Madhani A, Elahi S (2019) Source, spatial distribution and pollution assessment of Pb, Zn, Cu, and Pb, isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Sci Rep 9(1):5349

    Google Scholar 

  • Nishikawa M, Matsui I, Batdorj D, Jugder D, Mori I, Shimizu A, Sugimoto N, Takahashi K (2011) Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmos Environ 45(32):5710–5715

    CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272(5259):223

    CAS  Google Scholar 

  • NSOM (2018) Web page of National Statistical Office of Mongolia. http://www.en.nso.mn/index.php. Accessed Feb 2018

  • Ohta A (2015) Speciation study of Cr in a geochemical reference material sediment series using sequential extraction and XANES spectroscopy. Geostand Geoanal Res 39(1):87–103

    CAS  Google Scholar 

  • Pan H, Lu X, Lei K (2017) A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Sci Total Environ 609:1361–1369

    CAS  Google Scholar 

  • Pfeiffer M, Batbayar G, Hofmann J, Siegfried K, Karthe D, Hahn-Tomer S (2015) Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environ Earth Sci 73(2):649–662

    CAS  Google Scholar 

  • Rauret G, López-Sánchez J-F, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson C, Gomez A, Lück D, Bacon J (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2(3):228–233

    CAS  Google Scholar 

  • Rauret G, Lopez-Sanchez J, Luck D, Yli-Halla M, Muntau H, Quevauviller P (2001) The certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following sequential extraction procedure-BCR 701. Bruxelles: BCR Information European Commission. BCR Information. Reference Materials Report EUR, 19775

  • Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90(2):1106–1116

    Google Scholar 

  • Sato H (2012) Mongolia: the water situation in Ulaanbaatar. Social System Review. https://www.cgu.ac.jp/albums/abm.php?f=abm00000294.pdf&n=Mongolia%EF%BC%9A+The+Water+Situation+in+Ulaanbaatar.pdf. Accessed Sep 2019

  • Schlesinger WH, Klein EM, Vengosh A (2017) Global biogeochemical cycle of vanadium. Proc Natl Acad Sci 114(52):E11092–E11100

    CAS  Google Scholar 

  • Smolders E, Degryse F (2002) Fate and effect of zinc from tire debris in soil. Environ Sci Technol 36(17):3706–3710

    CAS  Google Scholar 

  • Soyol-Erdene T-O, Lin S, Tuuguu E, Daichaa D, Huang K-M, Bilguun U, Tseveendorj E-A (2019) Spatial and temporal variations of sediment metals in the Tuul River, Mongolia. Environ Sci Pollut Res 26(31):32420–32431

    Google Scholar 

  • Tian HZ, Zhao D, He MC, Wang Y, Cheng K (2011) Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China. Environ Pollut 159(6):1613–1619

    CAS  Google Scholar 

  • Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N (2009) Asian dust transported one full circuit around the globe. Nat Geosci 2:557

    CAS  Google Scholar 

  • Van de Velde K, Ferrari C, Barbante C, Moret I, Bellomi T, Hong S, Boutron C (1999) A 200-year record of atmospheric cobalt, chromium, molybdenum, and antimony in high altitude alpine firn and ice. Environ Sci Technol 33(20):3495–3501

    Google Scholar 

  • Wang M, Bai Y, Chen W, Markert B, Peng C, Ouyang Z (2012) A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China. Environ Pollut 161:235–242

    CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    CAS  Google Scholar 

  • World Bank (2008) Mongolia: energy efficient and cleaner heating in poor, peri-urban areas of Ulaanbaatar Summary Report on Activities. Air Qual Atmos Health 6(1):137–150

    Google Scholar 

  • Zhou C, Gui H, Hu J, Ke H, Wang Y, Zhang X (2019) Detection of new dust sources in central/east asia and their impact on simulations of a severe sand and dust storm. J Geophys Res Atmos 124(17–18):10232–10247

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Science and Technology Foundation of Mongolia (STF-BS-2017-69), the National University of Mongolia (P2018-3607), and the Ministry of Education, Culture, Science and Sport of Mongolia (HEEDP-No- J11A15). The authors thank Ts. Munkhtuya and E. Tseveendorj  for helps on  sampling and chemical analyses. They gratefully acknowledge Editor Chris D. Metcalfe and three anonymous reviewers for constructive criticism on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tseren-Ochir Soyol-Erdene.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilguun, U., Namkhainyambuu, D., Purevsuren, B. et al. Sources, Enrichment, and Geochemical Fractions of Soil Trace Metals in Ulaanbaatar, Mongolia. Arch Environ Contam Toxicol 79, 219–232 (2020). https://doi.org/10.1007/s00244-020-00748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00748-5

Navigation