Skip to main content
Log in

Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The extraction of plastic microparticles, so-called microplastics, from sludge is a challenging task due to the complex, highly organic material often interspersed with other benign microparticles. The current procedures for microplastic extraction from sludge are time consuming and require expensive reagents for density separation as well as large volumes of oxidizing agents for organic removal, often resulting in tiny sample sizes and thus a disproportional risk of sample bias. In this work, we present an improved extraction method tested on return activated sludge (RAS). The treatment of 100 ml of RAS requires only 6% hydrogen peroxide (H2O2) for bleaching at 70 °C, followed by density separation with sodium nitrate/sodium thiosulfate (SNT) solution, and is completed within 24 h. Extracted particles of all sizes were chemically analyzed with confocal Raman microscopy. An extraction efficiency of 78 ± 8% for plastic particle sizes 20 µm and up was confirmed in a recovery experiment. However, glass shards with a diameter of less than 20 µm remained in the sample despite the density of glass exceeding the density of the separating SNT solution by 1.1 g/cm3. This indicates that density separation may be unreliable for particle sizes in the lower micrometer range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Barboza LGA, Gimenez BCG (2015) Microplastics in the marine environment: current trends and future perspectives. Mar Pollut Bull. doi:10.1016/j.marpolbul.2015.06.008

    Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179

    Article  CAS  Google Scholar 

  • Brun N, Youssef I, Chevrel M-C, Chapron D, Schrauwen C, Hoppe S, Bourson P, Durand A (2013) In situ monitoring of styrene polymerization using Raman spectroscopy: multi-scale approach of homogeneous and heterogeneous polymerization processes. J Raman Spectrosc 44:909–915

    Article  CAS  Google Scholar 

  • Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182

    Article  CAS  Google Scholar 

  • Claessens M, Van Cauwenberghe LV, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70:227–233

    Article  CAS  Google Scholar 

  • Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS (2014) Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep 4:4528

    Article  Google Scholar 

  • Corcoran PL, Biesinger MC, Grifi M (2009) Plastics and beaches: a degrading relationship. Mar Pollut Bull 58(1):80–84

    Article  CAS  Google Scholar 

  • Corcoran PL, Norris T, Ceccanese T, Walzak MJ, Helm PA, Marvin CH (2015) Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environ Pollut 204:17–25

    Article  CAS  Google Scholar 

  • De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Article  Google Scholar 

  • Dubaish F, Liebezeit G (2013) Suspended microplastics and black carbon particles in the Jade System, Southern North Sea. Water Air Soil Pollut 224:1–8

    Article  CAS  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Res 75:63–82

    Article  CAS  Google Scholar 

  • Elias H-G (2003) Makromoleküle: band 3: industrielle polymere und synthesen, 6th edn. WILEY-VCH Verlag GmbH & Co. KGaA, WILEY

    Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434

    Article  CAS  Google Scholar 

  • Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C (2012) A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods 10:524–537

    Article  CAS  Google Scholar 

  • Klein S, Worch E, Knepper TP (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany. Environ Sci Technol 49:6070–6076

    Article  CAS  Google Scholar 

  • Kniggendorf A-K, Meinhardt-Wollweber M (2011) Of microparticles and bacteria identification—(resonance) Raman micro-spectroscopy as a tool for biofilm analysis. Water Res 45:4571–4582

    Article  CAS  Google Scholar 

  • Kniggendorf A-K, Meinhardt-Wollweber M, Yuan X, Roth B, Seifert A, Fertig N, Zeilinger C (2014) Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes. Biomed Opt Express 5(7):2054–2065

    Article  Google Scholar 

  • Kniggendorf A-K, Nogueira R, Kelb C, Schadzek P, Meinhardt-Wollweber M, Ngezahayo A, Roth B (2016) Confocal Raman microscopy and fluorescent in situ hybridization: a complementary approach for biofilm analysis. Chemosphere 161:112–118

    Article  CAS  Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineral crystallography. de Gruyter, Berlin

    Google Scholar 

  • Lippert T, Ortelli E, Raimondi J-C, Wambach J, Wei J, Wokaun A (1999) Imaging-XPS/Raman investigation on the carbonization of polyimide after irradiation at 308 nm. Appl Phys A. doi:10.1007/s003399900220

    Google Scholar 

  • Löder M, Gerdts G (2015) Methodology used for the detection and identification of microplastics: a critical appraisal. In: Bergman M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 447–448

    Google Scholar 

  • McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(2):11863–11871

    Article  CAS  Google Scholar 

  • Mohee R, Unmar G (2007) Determining biodegradability of plastic materials under controlled and natural composting environments. Waste Manag 27:1486–1493

    Article  CAS  Google Scholar 

  • Nuelle M-T, Dekiff JH, Remy D, Fries E (2014) A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut 184:161–169

    Article  CAS  Google Scholar 

  • Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2(6):315–320

    Article  Google Scholar 

  • Oldak D, Kaczmarek H, Buffeteau T, Sourisseau C (2005) Photo-and bio-degradation processes in polyethylene, cellulose and their blends studied by ATR-FTIR and Raman spectroscopies. J Mater Sci 40:4189–4198

    Article  CAS  Google Scholar 

  • Parnell S, Min K, Cakmak M (2003) Kinetic studies of polyurethane polymerization with Raman spectroscopy. Polymer 44:5137–5144

    Article  CAS  Google Scholar 

  • Sanchez W, Bender C, Porcher J-L (2014) Wild gudgeons (Gobio gobio) from French rivers are contaminated with microplastics: preliminary study and first evidence. Environ Res 128:98–100

    Article  CAS  Google Scholar 

  • Sato H, Shimoyama M, Kamiya T, Amari T, Sasic S, Ninomiya T, Siesler HW, Ozaki Y (2002) Raman spectra of high-density, low-density, and linear low-density polyethylene pellets and prediction of their physical properties by multivariate analysis. J Appl Polym Sci 86:443–448

    Article  CAS  Google Scholar 

  • Semensatto DL, Dias-Brito D (2007) Alternative saline solutions to float foraminiferal tests. J Foraminifer Res 37(3):265–269

    Article  Google Scholar 

  • Singh RP, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manag 28:347–358

    Article  CAS  Google Scholar 

  • Taylor ML, Gwinnett C, Robinson LF, Woodall LC (2016) Plastic microfibre ingestion by deep-sea organisms. Sci Rep 6(33997):1–8

    Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russel AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838

    Article  CAS  Google Scholar 

  • Van Echelpoel W, Vandegehuchte M, De Gueldre G, Van Cauwenberghe L (2014) Microplastics in a biological wastewater treatment plant and the surrounding freshwater environment in Flanders: quantitative assessment. Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in “Technology for Integrated Water Management.” http://lib.ugent.de/catalog/rug01:002147111

  • Yonkos LT, Friedel EA, Perez-Reyes AC, Ghosal S, Arthur CD (2014) Microplastics in four estuarine rivers in the Chesapeake Bay, USA. Environ Sci Technol 48:14195–14202

    Article  CAS  Google Scholar 

  • Zhang K, Feldner A, Fischer S (2011) FT Raman spectroscopic investigation of cellulose acetate. Cellulose 18:995–1003

    Article  CAS  Google Scholar 

  • Zhang K, Gong W, Lv J, Xiong X, Wu C (2015) Accumulation of floating microplastics behind the Three Gorges Dam. Environ Pollut 204:117–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Karin Kock and Benjamin Schwanda for their technical assistance to their work. The work of Dr. Kniggendorf was funded by the Federal Ministry of Education and Research (BMBF) of Germany within the project of OPTIMUS (Project Number: 13N13811). The work of Surya Sujathan was funded by the DAAD Sandwich Model Scholarships for Master’s Students of the IITs and IIMs, 2015 (Personal Ref No: 91590631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Nogueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujathan, S., Kniggendorf, AK., Kumar, A. et al. Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge. Arch Environ Contam Toxicol 73, 641–648 (2017). https://doi.org/10.1007/s00244-017-0415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0415-8

Navigation