Skip to main content

Microplastics in Sediment Cores from Asia and Africa as Indicators of Temporal Trends in Plastic Pollution

Abstract

Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm–1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi:10.1016/j.marpolbul.2011.05.030

    CAS  Article  Google Scholar 

  • Boonyatumanond R, Wattayakorn G, Amano A, Inouchi Y, Takada H (2007) Reconstruction of pollution history of organic contaminants in the upper Gulf of Thailand by using sediment cores: first report from Tropical Asia Core (TACO) project. Mar Pollut Bull 54:554–565

    CAS  Article  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179

    CAS  Article  Google Scholar 

  • Chow TJ, Bruland KW, Bertine K, Soutar A, Koide M, Goldberg ED (1973) Lead pollution: records in Southern California coastal sediments. Science 181:551–552. doi:10.1126/science.181.4099.551

    CAS  Article  Google Scholar 

  • Claessens M, Meester SD, Landuyt LV, Clerck KD, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62:2199–2204. doi:10.1016/j.marpolbul.2011.06.030

    CAS  Article  Google Scholar 

  • Cózar A et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111:10239–10244. doi:10.1073/pnas.1314705111

    Article  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “Anthropocene”. Glob Change Newslett 41:17–18

    Google Scholar 

  • Eriksen M et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9:e111913

    Article  Google Scholar 

  • Goldberg ED, Hodge V, Koide M, Griffin JJ (1976) Metal pollution in Tokyo as recorded in sediments of the Palace Moat. Geochem J 10:165–174

    CAS  Article  Google Scholar 

  • Isobe A, Uchida K, Tokai T, Iwasaki S (2015) East Asian seas: a hot spot of pelagic microplastics. Mar Pollut Bull 101:618–623. doi:10.1016/j.marpolbul.2015.10.042

    CAS  Article  Google Scholar 

  • Isobe A, Uchiyama-Matsumoto K, Uchida K, Tokai T (2016) Microplastics in the Southern Ocean. Mar Pollut Bull. doi:10.1016/j.marpolbul.2016.09.037

    Google Scholar 

  • Jambeck JR et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. doi:10.1126/science.1260352

    CAS  Article  Google Scholar 

  • Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188. doi:10.1126/science.1192321

    CAS  Article  Google Scholar 

  • Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195. doi:10.1016/j.envpol.2015.09.018

    CAS  Article  Google Scholar 

  • Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99. doi:10.1016/j.marpolbul.2012.11.028

    CAS  Article  Google Scholar 

  • Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM (2010) The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull 60:1873–1878. doi:10.1016/j.marpolbul.2010.07.020

    Article  Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45. doi:10.1016/j.marpolbul.2016.09.025

    CAS  Article  Google Scholar 

  • Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2:2014EF000240. doi:10.1002/2014ef000240

    Google Scholar 

  • Ogata Y et al (2009) International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal Waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446. doi:10.1016/j.marpolbul.2009.06.014

    CAS  Article  Google Scholar 

  • Rothstein SI (1973) Plastic particle pollution of the surface of the Atlantic Ocean: evidence from a seabird. Condor 75:5

    Google Scholar 

  • Sanada Y, Sato F, Kumata H, Takada H, Yamamoto A, Kato Y, Ueno T (1999) Estimation of sedimentation processes in Tokyo Bay using radionuclides and anthropogenic molecular markers. Geochemistry (Chikyu-kagaku) 33:123–138

    CAS  Google Scholar 

  • Satoto R, Subowo WS, Yusiasih R, Takane Y, Watanabe Y, Hatakeyama T (1997) Weathering of high-density polyethylene in different latitudes. Polym Degrad Stab 56:275–279

    CAS  Article  Google Scholar 

  • Simura K (1985) Aquatic environment of Tokyo-port: water quality and bottom sediment quality of Tokyo-port’s canals. In: 13th Symposium for environmental problem, 1985. Japan Society of Civil Engineers, pp 14–19

  • Smol JP (2002) Pollution of Lakes and Rivers: a paleoenvironmental perspective. Arnold, London

    Google Scholar 

  • Takada H, Yamashita R (2016) Chapter 7.2: Pollution status of persistent organic pollutants. United Nations Environment Programme, Nairobi

    Google Scholar 

  • Tanaka K, Takada H (2016) Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci Rep 6:34351

    CAS  Article  Google Scholar 

  • Teuten EL et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364:2027–2045. doi:10.1098/rstb.2008.0284

    CAS  Article  Google Scholar 

  • The Japan Plastics Industry Federation (2008) History of plastics in Japan (in Japanese). http://www.jpif.gr.jp/p100year/conts/p_history0707.pdf

  • Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499. doi:10.1016/j.envpol.2013.08.013

    Article  Google Scholar 

  • Van Metre PC, Mahler BJ (2005) Trends in hydrophobic organic contaminants in urban and reference lake sediments across the United States, 1970–2001. Environ Sci Technol 39:5567–5574. doi:10.1021/es0503175

    Article  Google Scholar 

  • Vianello A, Boldrin A, Guerriero P, Moschino V, Rella R, Sturaro A, Da Ros L (2013) Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar Coastal Shelf Sci 130:54–61. doi:10.1016/j.ecss.2013.03.022

    CAS  Article  Google Scholar 

  • Waters CN et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science. doi:10.1126/science.aad2622

    Google Scholar 

  • Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. doi:10.1016/j.envpol.2013.02.031

    CAS  Article  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the Plastisphere: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. doi:10.1021/es401288x

    CAS  Article  Google Scholar 

  • Zhao S, Danley M, Ward JE, Li D, Mincer TJ (2017) An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal Methods. doi:10.1039/C6AY02302A

    Google Scholar 

Download references

Acknowledgements

Dr. Masao Takayanagi is thanked for valuable discussions on the IR spectrum of polymers. The authors appreciate Dr. Kosuke Tanaka for providing photos of microplastics. Several students and staff from our laboratories provided assistance in the field. This study was financially supported by a Grant-in-Aid (Project Nos. 26550038, 22254001) and the Environment Research and Technology Development Fund (Project No. 4-1502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshige Takada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3858 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsuguma, Y., Takada, H., Kumata, H. et al. Microplastics in Sediment Cores from Asia and Africa as Indicators of Temporal Trends in Plastic Pollution. Arch Environ Contam Toxicol 73, 230–239 (2017). https://doi.org/10.1007/s00244-017-0414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0414-9