Skip to main content

Advertisement

Log in

Long-Term Oil Pollution and In Situ Microbial Response of Groundwater in Northwest China

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Potential threats exist where groundwater is polluted by high concentrations of oil compounds (980.20 mg L−1 the highest TPHs). An abandoned petrochemical plant in Lanzhou City, where long-term petrochemical products leakage contaminated the groundwater, was used as a field site in this study. To determine the extent of pollution and find an effective solution, chemical techniques combined with molecular biological techniques were used to survey the migration and decomposition of pollutants. Moreover, Illumina Sequencing was employed to reveal the microbial changes of different sites. Light-chain alkanes (mostly C6–C9), most benzene compounds, and some polycyclic aromatic hydrocarbons (naphthalene, 2-methylnaphthalene) mainly polluted the source. C29 to C36 and chlorobenzenes (hexachlorocyclohexane) polluted the secondary polluted sites. Moreover, chloralkane (trichloroethane and dichloroethane), benzene derivatives (trimethylbenzene and butylbenzene), and PAHs (fluorene and phenanthrene) were present in the other longtime-contaminated water. The bacterial genera are closely related with the chemical matters, and different groups of microorganisms gather in the sample sites that are polluted with different kinds of oil. The biodiversity and abundance of observed species change with pollution conditions. The dominant phyla (81%) of the bacterial community structure are Proteobacteria (62.2% of the total microbes), Bacteroidetes (8.85%), Actinobacteria (6.70%), and Choloroflexi (3.03%). Pseudomonadaceae is significant in the oil-polluted source and Comamonadaceae is significant in the secondary polluted (migrated oil) sample; these two genera are natural decomposers of refractory matters. Amycolatopsis, Rhodocyclaceae, Sulfurimonas, and Sulfuricurvum are the dominant genera in the long-migrated oil-polluted samples. Bioavailability of the oil-contaminated place differs with levels of pollution and cleaning the worse-polluted sites by microbes is more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bitrian M, Gonzalez RH, Paris G, Hellingwerf KJ, Nudel CB (2013) Blue-light-dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: additive involvement of three BLUF-domain-containing proteins. Microbiology 159(Pt 9):1828–1841. doi:10.1099/mic.0.069153-0

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone Catherine A, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth0510-335

    Article  CAS  Google Scholar 

  • Couling NR, Towell MG, Semple KT (2010) Biodegradation of PAHs in soil: influence of chemical structure, concentration and multiple amendment. Environ Pollut 158(11):3411–3420. doi:10.1016/j.envpol.2010.07.034

    Article  CAS  Google Scholar 

  • Dobson SJ, Colwell RR, Mcmeekin TA (1993) Direct sequencing of the polymerase chain reaction-amplified 16 s rRNA gene of Flavobacten’um gondwanense sp. nov. and Flavobacten’um salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Bacteriol 43(1):77–83

    Article  CAS  Google Scholar 

  • Doong R, Chang S, Sun Y (2000) Solid-phase microextraction for detemnining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 879(2):177–188. doi:10.1016/s0021-9673(00)00347-2

    Article  CAS  Google Scholar 

  • Dou J, Liu X, Hu Z (2008) Substrate interactions during anaerobic biodegradation of BTEX by the mixed cultures under nitrate reducing conditions. J Hazard Mater 158(2–3):264–272. doi:10.1016/j.jhazmat.2008.01.075

    Article  CAS  Google Scholar 

  • Ducros M, Carpentier B, Wolf S, Cacas MC (2016) Integration of biodegradation and migration of hydrocarbons in a 2D petroleum systems model: application to the Potiguar Basin, NE Brazil. J Pet Geol 39(1):61–78. doi:10.1111/jpg.12628

    Article  CAS  Google Scholar 

  • Ferreira L, Rosales E, Sanromán MA, Pazos M (2015) Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeriCECT 930 immobilized in hydrogel matrices. J Chem Technol Biotechnol 90:500–506.

    Article  CAS  Google Scholar 

  • Gedalanga P, Kotay SM, Sales CM, Butler CS, Goel R, Mahendra S (2013) Novel applications of molecular biological and microscopic tools in environmental engineering. Water Environ Res 85(10):917–950. doi:10.2175/106143013x13698672321742

    Article  Google Scholar 

  • Ghoshal S, Keane A, Lau PCK (2003) Assessing the bioavailability of organic pollutants using a novel bioluminescent biosensor. Abstr Pap Am Chem Soc 226:U514

    Google Scholar 

  • Ke L, Yu KSH, Wong YS, Tam NFY (2005) Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments. Sci Total Environ 340(1–3):177–187. doi:10.1016/j.scitotenv.2004.08.015

    Article  CAS  Google Scholar 

  • Khalid N, Kobayashi I, Neves MA, Uemura K, Nakajima M, Nabetani H (2016) Microchannel emulsification study on formulation and stability characterization of monodisperse oil-in-water emulsions encapsulating quercetin. Food Chem 212:27–34. doi:10.1016/j.foodchem.2016.05.154

    Article  CAS  Google Scholar 

  • Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54(Pt 6):2297–2300. doi:10.1099/ijs.0.63243-0

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial-degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  Google Scholar 

  • Lee EH, Cho KS (2009) Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J Hazard Mater 167(1–3):669–674. doi:10.1016/j.jhazmat.2009.01.035

    Article  CAS  Google Scholar 

  • Lu L, Xing D, Ren ZJ (2015) Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour Technol 195:115–121. doi:10.1016/j.biortech.2015.05.098

    Article  CAS  Google Scholar 

  • Lu S, Sun Y, Zhao X, Wang L, Ding A, Zhao X (2016) Sequencing insights into microbial communities in the water and sediments of Fenghe River, China. Arch Environ Contam Toxicol 71(1):122–132. doi:10.1007/s00244-016-0277-5

    Article  CAS  Google Scholar 

  • Manoli E, Samara C (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trac-Trends Anal Chem 18(6):417–428. doi:10.1016/s0165-9936(99)00111-9

    Article  CAS  Google Scholar 

  • Mazzeo DEC, Levy CE, de Angelis DdF, Marin-Morales MA (2010) BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ 408(20):4334–4340. doi:10.1016/j.scitotenv.2010.07.004

    Article  CAS  Google Scholar 

  • Mei X, Guo C, Liu B, Tang Y, Xing D (2015) Shaping of bacterial community structure in microbial fuel cells by different inocula. RSC Adv 5(95):78136–78141. doi:10.1039/c5ra16382j

    Article  CAS  Google Scholar 

  • Morais D, Pylro V, Clark IM, Hirsch PR, Totola MR (2016) Responses of microbial community from tropical pristine coastal soil to crude oil contamination. Peer J 4:e1733. doi:10.7717/peerj.1733

    Article  Google Scholar 

  • Mudarris M, Austin B, Segers P (1994) Flavobacterium scophthalmum sp. nov., a Pathogen of Turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 44(3):447–453

    Article  CAS  Google Scholar 

  • Ndu U, Barkay T, Mason RP et al (2015) The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria. PLoS ONE 10(9):14. doi:10.1371/journal.pone.0138333

    Article  Google Scholar 

  • Parsons ML, Morrison W, Rabalais NN, Turner RE, Tyre KN (2015) Phytoplankton and the Macondo oil spill: a comparison of the 2010 phytoplankton assemblage to baseline conditions on the Louisiana shelf. Environ Pollut 207:152–160. doi:10.1016/j.envpol.2015.09.019

    Article  CAS  Google Scholar 

  • Ponsin V, Maier J, Guelorget Y et al (2015) Documentation of time-scales for onset of natural attenuation in an aquifer treated by a crude-oil recovery system. Sci Total Environ 512:62–73. doi:10.1016/j.scitotenv.2015.01.033

    Article  Google Scholar 

  • Rodriguez-Blanco A, Antoine V, Pelletier E, Delille D, Ghiglione JF (2010) Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea. Environ Pollut 158(3):663–673. doi:10.1016/j.envpol.2009.10.026

    Article  CAS  Google Scholar 

  • Ryan MP, Adley CC (2010) Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect 75(3):153–157. doi:10.1016/j.jhin.2010.03.007

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231A. doi:10.1021/es040548w

    Article  CAS  Google Scholar 

  • Suja F, Rahim F, Taha MR et al (2014) Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int Biodeterior Biodegrad 90:115–122. doi:10.1016/j.ibiod.2014.03.006

    Article  CAS  Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7(3):255–261. doi:10.1016/j.mib.2004.04.001

    Article  Google Scholar 

  • Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Reg Sci Technol 53(1):16–41. doi:10.1016/j.coldregions.2007.06.009

    Article  Google Scholar 

  • Whitman WB (2010) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Bergey’s manual® of systematic bacteriology. doi:10.1007/978-0-387-68572-4

    Google Scholar 

  • Willems A, De Ley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov. for Alcaligenes paradoxus. Int Biodeterior Biodegrad 41(3):445–450

    Google Scholar 

  • Yergeau E, Maynard C, Sanschagrin S et al (2015) Microbial community composition, functions, and activities in the Gulf of Mexico 1 year after the Deepwater Horizon Accident. Appl Environ Microbiol 81(17):5855–5866. doi:10.1128/AEM.01470-15

    Article  CAS  Google Scholar 

  • Yi Y, Birks SJ, Cho S, Gibson JJ (2015) Characterization of organic composition in snow and surface waters in the Athabasca Oil Sands Region, using ultrahigh resolution Fourier transform mass spectrometry. Sci Total Environ 518:148–158. doi:10.1016/j.scitotenv.2015.02.018

    Article  Google Scholar 

  • You Y, Shim J, Cho CH, Ryu MH, Shea PJ, Kamala-Kannan S, Chae JC, Oh BT (2013) Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil. J Basic Microbiol 53:469–475

    Article  CAS  Google Scholar 

  • Zein MM, Pinto PX, Garcia-Blanco S, Suidan MT, Venosa AD (2006) Treatment of groundwater contaminated with PAHs, gasoline hydrocarbons, and methyl tert-butyl ether in a laboratory biomass-retaining bioreactor. Biodegradation 17(1):57–69. doi:10.1007/s10532-005-3049-x

    Article  CAS  Google Scholar 

  • Zhang D, He Y, Wang Y, Wang H, Lin W, Aries E, Huang WE (2012) Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microbial Biotechnol 5(1):87–97. doi:10.1111/j.1751-7915.2011.00301.x

    Article  CAS  Google Scholar 

  • Zhang J, Yang JC, Wang RQ et al (2013) Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment. Sci Total Environ 463:1–10. doi:10.1016/j.scitotenv.2013.05.066

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51178048, 51378064, and 51678054) and BNU Discretionary Foundation (Grant No. 2014KJJCB22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Lu, S., Zhao, X. et al. Long-Term Oil Pollution and In Situ Microbial Response of Groundwater in Northwest China. Arch Environ Contam Toxicol 72, 519–529 (2017). https://doi.org/10.1007/s00244-017-0405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0405-x

Keywords