Skip to main content

Advertisement

Log in

Historical Profiles of Polycyclic Aromatic Hydrocarbons (PAHs) in Marine Sediment Cores from Northwest Spain

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The northwest coast of Spain is characterized by an irregular coastline rich in marine life and with the highest mussel production in Europe. Taking this into account, the characterization of the pollution levels and the sources involved appear necessary. Not only were parent Polycyclic Aromatic Hydrocarbons (PAHs) analysed but also their alkylated homologues. In total, 35 compounds were analyzed in 5 sediment cores. Sediments were collected using a box core dredge and extracted by (Pressurized Liquid Extraction) whilst the quantification of PAHs was performed using gas chromatography coupled to mass spectrometry (GC–MS). The total concentration detected varied from 49.6 to 2489 ng g−1 dry weight (d.w.) of which parent PAHs ranged from 44.5 to 2254 ng g−1 d.w. and alkylated PAHs varied from 5.04 to 317 ng g−1 d.w. Temporal and spatial evolution were outlined and pollution sources were identified along with a possible correlation between this pollution and local history and industry. Most of the PAHs from the superficial samples have a biomass and coal combustion profile, and some specific, localized events are reflected in the total PAH concentration evolution. Moreover, the study of the deepest layers of the sampled cores provides a baseline to develop background concentration values that will help in future sediment quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acquavita A et al (2014) The PAH level, distribution and composition in surface sediments from a Mediterranean Lagoon: the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Mar Poll Bull 81:234–241

    Article  CAS  Google Scholar 

  • Aly Salem DMS et al (2014) The monitoring and risk assessment of aliphatic and aromatic hydrocarbons in sediments of the Red Sea, Egypt. Egypt J Aquat Res 40:333–348

    Article  Google Scholar 

  • Andersson M et al (2014) Polycyclic aromatic hydrocarbons (PAHs) in sediments from lake Lille Lungegårdsvannet in Bergen, western Norway; appraising pollution sources from the urban history. Sci Total Environ 470–471:1160–1172

    Article  Google Scholar 

  • Barbosa P et al (2007) Forest fires in Europe 2006. EUR 22931 EN – Joint Research Centre – Institute for Environment and Sustainability, pp 1–77

  • Beiras R et al (2012) Linking chemical contamination to biological effects in coastal pollution monitoring. Ecotoxicology 21:9–17. doi:10.1007/s10646-011-0757-3

    Article  CAS  Google Scholar 

  • Boll ES et al (2015) Chemical fingerprinting of hydrocarbon-contamination in soil. Env Sci Proc Impacts 17:606–618

    Article  CAS  Google Scholar 

  • Brunk BK, Jirka JH, Lion LW (1997) Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: implications for pollutant trapping in estuaries. Environ Sci Tech 31:119–125

    Article  CAS  Google Scholar 

  • Budzinski H et al (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Chen C-W, Chen C-F (2011) Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Mar Poll Bull 63(5–12):417–423

    Article  CAS  Google Scholar 

  • Crane JL (2014) Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban stormwater pond sediments in Minnesota, USA. Arch Environ Contam Toxicol 66(2):176–200

    Article  CAS  Google Scholar 

  • Cubo María JE et al (2012) Los Incendios Forestales en España Decenio 2001-2010. Ministerio de Agricultura, Alimentación y Medio Ambiente Secretaría General Técnica, pp 1–138

  • De La Torre-Roche RJ, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163(2–3):946–958

    Article  Google Scholar 

  • De Luca G et al (2005) Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Mar Poll Bull 50(11):1223–1232

    Article  Google Scholar 

  • Dong C-D, Chen C-F, Chen C-W (2012) Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int J Environ Res Public Health 9(6):2175–2188

    Article  CAS  Google Scholar 

  • Ekpo BO et al (2012) Distributions and sources of polycyclic aromatic hydrocarbons in surface sediments from the Cross River estuary, S.E. Niger Delta, Nigeria. Environ Monit Assess 184(2):1037–1047

    Article  CAS  Google Scholar 

  • EU (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities 327/1

  • EU (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union 164/19

  • García A, Bernárdez P, Prego R (2013) Copper in Galician ria sediments: natural levels and harbour contamination. Sci Mar 77(S1):91–99

    Article  Google Scholar 

  • Guo J-Y et al (2011) Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Arch Environ Contam Toxicol 60(4):590–596

    Article  CAS  Google Scholar 

  • Hegemen WJM, Van der Weijden CH, Loch JPG (1995) Sorption of benzo[a]- pyrene and phenanthrene on suspended harbor sediment as a function of suspended sediment concentration and salinity: a laboratory study using the cosolvent partition coefficient. Environ Sci Tech 29:363–371

    Article  Google Scholar 

  • Howarth RJ et al (2005) Sources and timing of anthropogenic pollution in the Ensenada de San Simón (inner Ría de Vigo), Galicia, NW Spain: an application of mixture-modelling and nonlinear optimization to recent sedimentation. Sci Total Environ 340:149–176

    Article  CAS  Google Scholar 

  • Ices MCWG (2013) Report of the Marine Chemistry Working Group (MCWG). Denmark, Copenhagen

    Google Scholar 

  • Iriarte Goñi I (2008) Consumo, importaciones y extracción de madera en España en el siglo XX. In XII Congreso de Historia Agraria

  • Jouanneau JM et al (2002) Recent sedimentation and sedimentary budgets on the western Iberian shelf. Progr Oceanogr 52(2–4):261–275

    Article  Google Scholar 

  • Li G et al (2014) Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula. Mar Poll Bull 84(1–2):418–423

    Article  CAS  Google Scholar 

  • Little DI et al (2015) Environmental forensics evaluation of sources of sediment hydrocarbon contamination in Milford Haven Waterway. Environ Sci Proc Impacts 17(2):398–420

    Article  CAS  Google Scholar 

  • Long ER et al (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97

    Article  Google Scholar 

  • Magi E et al (2002) Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environ Poll 119(1):91–98

    Article  CAS  Google Scholar 

  • Mai B-X et al (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Poll 117:457–474

    Article  CAS  Google Scholar 

  • McCauley DJ, DeGraeve G, Linton T (2000) Sediment quality guidelines and assessment: overview and research needs. Environ Sci Policy 3:133–144

    Article  Google Scholar 

  • Mehdinia A, Aghadadashi V, Fumani NS (2015) Origin, distribution and toxicological potential of polycyclic aromatic hydrocarbons in surface sediments from the Bushehr coast, The Persian Gulf. Mar Poll Bull 90(1–2):334–338

    Article  CAS  Google Scholar 

  • Ministerio de Medio Ambiente. Gobierno de España (2006) Incendios Forestales en España. Año 2006

  • Morillo E et al (2007) Soil pollution by PAHs in urban soils: a comparison of three European cities. J Environ Monitor 9(9):1001

    Article  CAS  Google Scholar 

  • Murphy PP et al (1988) The transport and fate of particulate hydrocarbons in an urban fjord-like estuary. Estuarine Coastal Shelf Sci 27:461–482

    Article  CAS  Google Scholar 

  • Nasher E et al (2013) Assessing the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia. Sci World J 2013:1–13

    Article  Google Scholar 

  • O’Connor T (2004) The Sediment quality guideline, ERL, is not a chemical concentration at the threshold of sediment toxicity. Mar Poll Bull 49(5–6):383–385

    Article  Google Scholar 

  • Oliva AL et al (2015) Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca Estuary, Argentina. Arch Environ Contamin Toxicol 69(2):163–172

    Article  CAS  Google Scholar 

  • OSPAR (2006) Agreement on background concentrations for contaminants in seawater, biota and sediment (OSPAR Agreement 2005–2006)

  • OSPAR Commission (2009) Agreement on CEMP Assessment Criteria for the QSR 2010. OSPAR Agreement number: 2009–2002

  • Otto L (1975) Oceanography of the Ría de Arosa (N.W. Spain). Mededelingen en Verhandelingen, No. 96. Koninklijk Nederlands Meteorologisch Instituut, Staatsuitgeverij, ’S-Gravenhage

  • Pérez-Fernández B et al (2015) PAHs in the Ría de Arousa (NW Spain): a consideration of PAHs sources and abundance. Mar Poll Bull 95:155–165

    Article  Google Scholar 

  • Perillo GME (1995) Geomorphology and sedimentology of estuaries. Develop Sedimentol 53:1–16

    Article  Google Scholar 

  • Prego R, Cobelo-García A (2003) Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ Poll 121:425–452

    Article  CAS  Google Scholar 

  • Pritchard DW (1967) What is an estuary: physical viewpoint. In: Lauff GH (ed) Estuaries. American Association for the Advancement of Science Publication, Washington

    Google Scholar 

  • Qiao M et al (2006) Identification of Ah receptor agonists in sediment of Meiliang Bay, Taihu Lake, China. Environ Sci Tech 40(5):1415–1419

    Article  CAS  Google Scholar 

  • Quelle C et al (2011) Chemometric tools to evaluate the spatial distribution of trace metals in surface sediments of two Spanish rias. Talanta 87:197–209

    Article  CAS  Google Scholar 

  • Rosón G et al (1991) Flujos de los aportes de agua continental a la Ría de Arousa. Scentia Mar 55(4):583–589

    Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ría de Vigo (NW Spain): an assessment of metal pollution. Mar Poll Bull 40(11):968–980

    Article  CAS  Google Scholar 

  • Saha M et al (2009) Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar Poll Bull 58(2):189–200

    Article  CAS  Google Scholar 

  • Saha M, Takada H, Bhattacharya B (2012) Establishing criteria of relative abundance of alkyl polycyclic aromatic hydrocarbons (PAHs) for differentiation of pyrogenic and petrogenic PAHs: an application to indian sediment. Environ Forens 13(4):312–331

    Article  CAS  Google Scholar 

  • Savinov VM et al (2003) Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci Total Environ 306:39–56

    Article  CAS  Google Scholar 

  • Scheibye K et al (2014) Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua. Chemosphere 95:556–565

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources [review]. Environ Poll 162:110–119

    Article  CAS  Google Scholar 

  • USEPA (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Office of Research and Development, Washington, p 26

    Google Scholar 

  • Viñas Diéguez L, Franco Hernández MÁ, González Fernández JJ (2002) Distribution of PAHs in surficial sediments of the Vigo estuary, Spain. Central axis and adjacent shelf. Polycyclic Aromat Compd 22(2):161–173

    Article  Google Scholar 

  • Viñas L, Franco MA, Gonzalez JJ (2009) Polycyclic aromatic hydrocarbon composition of sediments in the Ria de Vigo (NW Spain). Arch Environ Contam Toxicol 57(1):42–49

    Article  Google Scholar 

  • Wang X, Zhang Y, Chen RF (2001) Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Mar Poll Bull 42(11):1139–1149

    Article  CAS  Google Scholar 

  • Wang G et al (2004) Determination of polycyclic aromatic hydrocarbons and trace metals in New Orleans soils and sediments. Soil Sediment Contam 13(3):313–327

    Article  Google Scholar 

  • Yunker MB et al (1993) Alkane, terpene, and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf.” Riverine contributions to Beaufort Sea coastal sediment. Geochim Cosmochim Acta 57:3041–3061

    Article  CAS  Google Scholar 

  • Yunker MB et al (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochem 33(4):489–515

    Article  CAS  Google Scholar 

  • Zaborska A et al (2011) Spatio-temporal patterns of PAHs, PCBs and HCB in sediments of the western Barents Sea. Oceanologia 53(4):1005–1026

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank M. López and G. Fernández Carrera and the technical staff of the Marine Pollution Department at IEO-Vigo, as well as the officers and crew of R/V José María Navaz for assistance in samples collection and preparation. The study was funded by a Fund Management Agreement between the IEO and the Spanish Ministry of Agriculture, Food and Environment (2010–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Viñas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Fernández, B., Viñas, L. & Bargiela, J. Historical Profiles of Polycyclic Aromatic Hydrocarbons (PAHs) in Marine Sediment Cores from Northwest Spain. Arch Environ Contam Toxicol 71, 439–453 (2016). https://doi.org/10.1007/s00244-016-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0312-6

Keywords

Navigation