Skip to main content

Advertisement

Log in

Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The increased use of silver nanoparticles (AgNP) in industrial and consumer products worldwide has resulted in their release to aquatic environments. Previous studies have mainly focused on the effects of AgNP on pelagic species, whereas few studies have assessed the risks to benthic invertebrates despite the fact that the sediments act as a large potential sink for NPs. In this study, the toxicity of sediment-associated AgNP was evaluated using the standard sediment toxicity test for chemicals provided by the Organization of Economic Cooperation and Development. The freshwater benthic oligochaete worm Lumbriculus variegatus was exposed to sediment-associated AgNP in artificial and natural sediments at concentrations ranging from 91 to 1098 mg Ag/kg sediment dry weight. Silver nitrate (AgNO3) was used as a reference compound for Ag toxicity. The measured end points of toxicity were mortality, reproduction, and total biomass. In addition, the impact of sediment-associated AgNP on the feeding rate of L. variegatus was studied in a similar test set-up as mentioned previously. The addition of AgNP into the sediment significantly affected the feeding rate and reproduction of the test species only at the highest concentration (1098 mg/kg) of Ag in the natural sediment with the lowest pH. In comparison, the addition of AgNO3 resulted in reproductive toxicity in every tested sediment, and Ag was more toxic when spiked as AgNO3 than AgNP. In general, sediments were observed to have a high capacity to eliminate the AgNP-derived toxicity. However, the capacity of sediments to eliminate the toxicity of Ag follows a different pattern when spiked as AgNP than AgNO3. The results of this study emphasize the importance of sediment-toxicity testing and the role of sediment properties when evaluating the environmental effects and behavior of AgNP in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bell RA, Kramer JR (1999) Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem 18:9–22

    CAS  Google Scholar 

  • Berry WJ, Cantwell MG, Edwards PA, Serbst JR, Hansen DJ (1999) Predicting toxicity of sediments spiked with silver. Environ Toxicol Chem 18:40–48

    Article  CAS  Google Scholar 

  • Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM et al (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2—toxicity and Ag speciation. Environ Sci Technol 46:6925–6933

    Article  CAS  Google Scholar 

  • Call DJ, Polkinghorne CN, Markee TP, Brooke LT, Geiger DL, Gorsuch JW et al (1999) Silver toxicity to Chironomus tentans in two freshwater sediments. Environ Toxicol Chem 18:30–39

    Article  CAS  Google Scholar 

  • Chan CYS, Chiu JMY (2015) Chronic effects of coated silver nanoparticles on marine invertebrate larvae: a proof of concept study. PLoS One 10:e0132457

    Article  Google Scholar 

  • Coleman JG, Kennedy AJ, Bednar AJ, Ranville JF, Laird JG, Harmon AR et al (2013) Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ Toxicol Chem 32:2069–2077

    Article  CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    Article  CAS  Google Scholar 

  • Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 420:327–333

    Article  CAS  Google Scholar 

  • Cozzari M, Elia AC, Pacini N, Smith BD, Boyle D, Rainbow PS et al (2015) Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano-, and bulk-sized silver. Environ Pollut 198:32–40

    Article  CAS  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM et al (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502

    Article  Google Scholar 

  • Erickson RJ, Brooke LT, Kahl MD, Venter FV, Harting SL, Markee TP et al (1998) Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environ Toxicol Chem 17:572–578

    Article  CAS  Google Scholar 

  • García-Alonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS et al (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45:4630–4636

    Article  Google Scholar 

  • García-Alonso J, Rodriguez-Sanchez N, Misra SK, Valsami-Jones E, Croteau M, Luoma SN et al (2014) Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Environ 476:688–695

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Heckmann L, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226–233

    Article  CAS  Google Scholar 

  • Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V et al (2015) Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modelling approaches. Environ Sci Technol 49:4389–4397

    Article  CAS  Google Scholar 

  • Leppänen MT, Kukkonen JVK (1998) Relationship between reproduction, sediment type, and feeding activity of Lumbriculus variegatus (Müller): implications for sediment toxicity testing. Environ Toxicol Chem 17:2196–2202

    Article  Google Scholar 

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang X et al (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–13448

    Article  CAS  Google Scholar 

  • Loza K, Diendorf J, Sengstock C, Ruiz-Gonzales L, Gonzalez-Calbet JM, Vallet-Regi M et al (2014) The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B 2:1634–1643

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Mäenpää KA, Sormunen AJ, Kukkonen JVK (2003) Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin, and bentazone) in Lumbriculus variegatus (Oligochaeta) Chironomus riparius (Insecta). Ecotoxicol Environ Saf 56:398–410

    Article  Google Scholar 

  • Mäenpää K, Sorsa K, Lyytikäinen M, Leppänen M, Kukkonen JVK (2008) Bioaccumulation, sublethal toxicity, and biotransformation of sediment-associated pentachlorophenol in Lumbriculus variegatus (Oligochaeta). Ecotoxicol Environ Saf 69:121–129

    Article  Google Scholar 

  • Moore M (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Nair PMG, Park SY, Choi J (2013) Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 92:592–599

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Organization for Economic Cooperation and Development (2007) Test no. 225: sediment-water Lumbriculus toxicity test using spiked sediment. OECD, Paris, France

  • Park E, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878

    Article  CAS  Google Scholar 

  • Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–11961

    Article  CAS  Google Scholar 

  • Petersen EJ, Diamond SA, Kennedy AJ, Goss GG, Ho K, Lead J et al (2015) Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol 49:9532–9547

    Article  CAS  Google Scholar 

  • Ristola T, Pellinen J, Van Hoof PL, Leppänen M, Kukkonen J (1996) Characterization of Lake Ladoga sediments. II: toxic chemicals. Chemosphere 32:1179–1192

    Article  CAS  Google Scholar 

  • Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D et al (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  Google Scholar 

  • Siegel S, Castellan J (1988) Non parametric statistics for the behavioural sciences, 2nd edn. McGraw-Hill International, New York

    Google Scholar 

  • Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1: aggregation and dissolution. Environ Sci Technol 46:6915–6924

    Article  CAS  Google Scholar 

  • van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD et al (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–8014

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory 6:1769–1780

    CAS  Google Scholar 

  • Wang Z, Liu S, Ma J, Qu G, Wang X, Yu S et al (2013) Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells 7:4171–4186

    CAS  Google Scholar 

  • Wingert-Runge B, Andren AW (1993) Adsorptive behavior of silver to synthetic and natural sediments in aqueous systems. The 1st international conference proceedings: transport, fate and effects of silver in the environment, session B, pp 19–22

Download references

Acknowledgments

The work was funded by the Academy of Finland (Projects Nos. 214545 and 21800). Kimmo Mäenpää and Eeva-Riikka Vehniäinen acknowledge the Academy of Finland for funding (Project No. 258120 to K. M. and 285296 to E-RV). The responsible author also acknowledges the support of the Finnish Doctoral Programme in Environmental Science Technology and the University of Jyväskylä Graduate School for Doctoral Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Elias Rajala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajala, J.E., Mäenpää, K., Vehniäinen, ER. et al. Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus . Arch Environ Contam Toxicol 71, 405–414 (2016). https://doi.org/10.1007/s00244-016-0294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0294-4

Keywords

Navigation