Microplastic Ingestion by Wild and Cultured Manila Clams (Venerupis philippinarum) from Baynes Sound, British Columbia



Microplastics, plastic particles <5 mm, are an emerging concern in aquatic ecosystems. Because microplastics are small, they are available to many filter-feeding organisms, which can then be consumed by higher trophic level organisms, including humans. This study documents the quantity of microplastics present in wild and cultured Manila clams (Venerupis philippinarum). Three active shellfish farms and three reference beaches (i.e., non-shellfish farm sites) in Baynes Sound, British Columbia were chosen to examine the microplastic concentrations in wild and cultured Manila clams. Microplastics were isolated using a nitric acid digestion technique and enumerated from 54 clams (27 farmed and 27 non-farmed). Qualitative attributes, such as colour and microplastic type (fiber, fragment, or film) also were recorded. There was no significant difference (F = 1.29; df = 1,4; P = 0.289) between microplastic concentrations in cultured and wild clams. Microplastic concentrations ranged from 0.07 to 5.47 particles/g (from reference beach and shellfish farm clams, respectively). Fibers were the dominant microplastic (90 %); colourless and dark gray fibers were the most common colours observed (36 and 26 %, respectively). Although this indicates that microplastics are definitely present in seafood consumed by humans, shellfish aquaculture operations do not appear to be increasing microplastic concentrations in farmed clams in this region.


Bivalve Manila Clam Shellfish Farm Northeast Pacific Ocean Nitric Acid Digestion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding for this project was provided by the Natural Sciences and Engineering Research Council (Undergraduate Student Research Award), the Canada Foundation for Innovation, and the British Columbia Knowledge Development Fund. Thank you to Dr. Eric Demers and Dr. Jane Watson for reviewing early stages of this manuscript, Dr. Peter Ross and Dr. Moira Galbraith for their extensive assistance and training, and Brenna Collicutt and Robert Bourdon for development of field and lab protocols. The authors would specifically like to thank the three shellfish farmers who allowed us access to their farms and clams.


  1. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030 CrossRefGoogle Scholar
  2. Arthur C, Baker J, Bamford H (eds) (2009) Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. Sept 9–11, 2008. NOAA Technical Memorandum NOS-OR&R-30Google Scholar
  3. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. doi: 10.1016/j.envpol.2014.12.021 CrossRefGoogle Scholar
  4. Bendell LI (2015) Favored use of anti-predator netting (APN) applied for the farming of clams leads to little benefits to industry while increasing nearshore impacts and plastics pollution. Mar Pollut Bull 91:22–28. doi: 10.1016/j.marpolbul.2014.12.043 CrossRefGoogle Scholar
  5. Besseling E, Foekema EM, Van Franeker JA, Leopold MF, Kühn S, Bravo Rebolledo EL, Heße Mielke L, Ijzer J, Kamminga P, Koelmans AA (2015) Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae. Mar Pollut Bull 95:248–252. doi: 10.1016/j.marpolbul.2015.04.007 CrossRefGoogle Scholar
  6. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60:2275–2278. doi: 10.1016/j.marpolbul.2010.08.007 CrossRefGoogle Scholar
  7. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031. doi: 10.1021/es800249a CrossRefGoogle Scholar
  8. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. doi: 10.1021/es201811s CrossRefGoogle Scholar
  9. Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70:227–233CrossRefGoogle Scholar
  10. Cluzard M, Kazmiruk TN, Kazmiruk VD, Bendell LI (2015) Intertidal concentrations of microplastics and their influence on ammonium cycling as related to the shellfish industry. Arch Environ Contam Toxicol. doi: 10.1007/s00244-015-0156-5 Google Scholar
  11. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. doi: 10.1016/j.marpolbul.2011.09.025 CrossRefGoogle Scholar
  12. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49:1130–1137. doi: 10.1021/es504525u CrossRefGoogle Scholar
  13. Comox Valley Regional District (CVRD) (2015) Regional sewer initiatives: south region. Accessed 19 Feb 2015
  14. Cusson M, Tremblay R, Daigle G, Roussy M (2005) Modeling the depuration potential of blue mussels (Mytilus spp.) in response to thermal shock. Aquaculture 250:183–193. doi: 10.1016/j.aquaculture.2005.03.045 CrossRefGoogle Scholar
  15. De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, Robbens J (2014) Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar Pollut Bull 85:146–155. doi: 10.1016/j.marpolbul.2014.06.006 CrossRefGoogle Scholar
  16. Desforges JPW, Galbraith M, Dangerfield N, Ross PS (2014) Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 79:94–99. doi: 10.1016/j.marpolbul.2013.12.035 CrossRefGoogle Scholar
  17. Desforges JP, Galbraith M, Ross PS (2015) Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch Environ Contam Toxicol 69:320–330. doi: 10.1007/s00244-015-0172-5 CrossRefGoogle Scholar
  18. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28:2. doi: 10.1186/s12302-015-0069-y CrossRefGoogle Scholar
  19. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. doi: 10.1016/j.watres.2015.02.012 CrossRefGoogle Scholar
  20. Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114. doi: 10.1016/j.marpolbul.2005.04.030 CrossRefGoogle Scholar
  21. Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:177–182. doi: 10.1016/j.marpolbul.2013.10.007 CrossRefGoogle Scholar
  22. Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58:1225–1228. doi: 10.1016/j.marpolbul.2009.04.025 CrossRefGoogle Scholar
  23. Fisheries and Oceans Canada (2013) Canadian aquaculture production statistics. Aquaculture production quantities and values. Accessed 19 Feb 2015
  24. Fisheries and Oceans Canada (2014) Species farmed in Canada. Accessed 19 Feb 2015
  25. Fisheries and Oceans Canada (2015) Farmed mussels. Aquaculture species farmed in Canada. Accessed 19 Feb 2015
  26. Gillespie GE, Kronlund AR (1999) A manual for intertidal clam surveys. Canadian Technical Report of Fisheries and Aquatic Sciences 2270. Fisheries and Oceans Canada Science. Government of CanadaGoogle Scholar
  27. Hadley NH, Whetsone JM (2007) Hard clam hatchery and nursery production. SRAC Publication No. 4301. Southern Regional Aquaculture Center, United States of AmericaGoogle Scholar
  28. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. doi: 10.1021/es2031505 CrossRefGoogle Scholar
  29. Hinojosa IA, Thiel M (2009) Floating marine debris in fjords, gulfs and channels of southern Chile. Mar Pollut Bull 58:341–350. doi: 10.1016/j.marpolbul.2008.10.020 CrossRefGoogle Scholar
  30. Jamieson GS, Chew L, Gillespie G, Robinson A, Bendell-Young L, Heath W, Bravender B, Tompkins A, Nishimura D, Doucette P (2001) Phase 0 Review of the environmental impacts of intertidal shellfish aquaculture in Baynes Sound. Fisheries and Oceans Science Research Document 2001/125. Government of CanadaGoogle Scholar
  31. Lechner A, Keckeis H, Lumesberger-Loisl F, Zens B, Krusch R, Tritthart M, Glas M, Schludermann E (2014) The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut 188:177–181. doi: 10.1016/j.envpol.2014.02.006 CrossRefGoogle Scholar
  32. Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195. doi: 10.1016/j.envpol.2015.09.018 CrossRefGoogle Scholar
  33. Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99. doi: 10.1016/j.marpolbul.2012.11.028 CrossRefGoogle Scholar
  34. Mathalon A, Hill P (2014) Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81:69–79. doi: 10.1016/j.marpolbul.2014.02.018 CrossRefGoogle Scholar
  35. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318CrossRefGoogle Scholar
  36. McCormick AR (2015) Anthropogenic litter and microplastic in urban streams: abundance, source, and fate. Dissertation, Loyola UniversityGoogle Scholar
  37. Moore, CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139. doi: 10.1016/j.envres.2008.07.025 CrossRefGoogle Scholar
  38. Newton P, Gilchris A (2010) Technical summary of intrinsic vulnerability mapping methods for Vancouver Island. Vancouver Island Water Resources Vulnerability Mapping Project - Phase 2. Vancouver Island UniversityGoogle Scholar
  39. Nobre CR, Santana MFM, Maluf A, Cortez FS, Cesar A, Pereira CDS, Turra A (2015) Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar Pollut Bull 92:99–104. doi: 10.1016/j.marpolbul.2014.12.050 CrossRefGoogle Scholar
  40. Ogata Y, Takada H, Mizukawa K et al (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446. doi: 10.1016/j.marpolbul.2009.06.014 CrossRefGoogle Scholar
  41. Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237. doi: 10.1016/j.marpolbul.2007.03.022 CrossRefGoogle Scholar
  42. Rocha-Santos T, Duarte AC (2015) A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal Chem 65:47–53. doi: 10.1016/j.trac.2014.10.011 CrossRefGoogle Scholar
  43. Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, Shim WJ (2015) A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull 93:202–209. doi: 10.1016/j.marpolbul.2015.01.015 CrossRefGoogle Scholar
  44. Stolte A, Forster S, Gerdts G, Schubert H (2015) Microplastic concentrations in beach sediments along the German Baltic coast. Mar Pollut Bull 99:216–229. doi: 10.1016/j.marpolbul.2015.07.022 CrossRefGoogle Scholar
  45. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764. doi: 10.1021/es071737s CrossRefGoogle Scholar
  46. Teuten EL, Saquing JM, Knappe DRU et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B Biol Sci 364:2027–2045. doi: 10.1098/rstb.2008.0284 CrossRefGoogle Scholar
  47. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70. doi: 10.1016/j.envpol.2014.06.010 CrossRefGoogle Scholar
  48. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17. doi: 10.1016/j.envpol.2015.01.008 CrossRefGoogle Scholar
  49. Vandermeersch G, Van Cauwenberghe L, Janssen CR, Antonio M, Kit G, Gabriella F, Michiel KJJ, Jorge D, Karen B, Johan R, Lisa D (2015) A critical view on microplastic quantification in aquatic organisms. Environ Res 143:46–55. doi: 10.1016/j.envres.2015.07.016 CrossRefGoogle Scholar
  50. von Moos N, Burkhardt-Holm P, Koehler A (2012) Uptake and effects of microplastics on cells and tissue of the Blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:327–335. doi: 10.1021/es302332w Google Scholar
  51. Wright SL, Rowe D, Thompson RC, Galloway TS (2013a) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033. doi: 10.1016/j.cub.2013.10.068 CrossRefGoogle Scholar
  52. Wright SL, Thompson RC, Galloway TS (2013b) The physical impacts of microplastics on marine organisms: a review. Environ Pollut. doi: 10.1016/j.envpol.2013.02.031 Google Scholar
  53. Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138:201–211. doi: 10.1016/j.envpol.2005.04.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Biology DepartmentVancouver Island UniversityNanaimoCanada
  2. 2.Centre for Shellfish ResearchVancouver Island UniversityNanaimoCanada

Personalised recommendations