Skip to main content

Advertisement

Log in

Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59–3.79) and high electrical conductivity values (1040–6430 μS/cm), in addition to high sulfate (594–5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ34 \({\text{S}}_{{{\text{SO}}_{ 4} }}\) and δ34 \({\text{S}}_{{{\text{FeS}}_{ 2} }}\) values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • American Public Health Association (1998) Acidity (2310) titration method. In: Standard methods for the examination of water and wastewater (20th edn). APHA, Washington

  • Baba A, Gunduz O (2010) Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey. Arch Environ Contam Toxicol 58:499–513

    Article  CAS  Google Scholar 

  • Baba A, Save D, Gunduz O, Gurdal G, Bozcu M, Sulun S (2009) The assessment of the mining activities in Can Coal Basin from a medical geology perspective. Report of the Scientific and Technological Research Council of Turkey, Ankara

  • Bachmann TM, Friese K, Zachmann DW (2001) Redox and pH conditions in the water column and in the sediments of an acidic mining lake. J Geochem Explor 73:75–86

    Article  CAS  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271

    Article  CAS  Google Scholar 

  • Balci N (2010) Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (<3) and implications for AMD environment. Environ Earth Sci 60:485–493

    Article  CAS  Google Scholar 

  • Balci N, Wayne CS, Mayer B, Mandernack K (2007) Oxygen and sulfur isotope systematics of sulfate by bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta 71:3796–3811

    Article  CAS  Google Scholar 

  • Balci N, Mayer B, Wayne CS, Mandernack K (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta 77:335–351

    Article  CAS  Google Scholar 

  • Balci N, Gul S, Kilic MM, Karagüler NG, Sari E, Sonmez MS (2014) Biogeochemistry of Balıkesir Balya Pb-Zn mine tailings site and its effect on generation of acid mine drainage. Geol Bull Turkey 57:1–24

    Google Scholar 

  • Balci N, Menekse M, Karaguler NG, Sonmez MS, Meister P (2015) Reproducing authigenic carbonate precipitation in the hypersaline Lake Acıgöl (Turkey) with microbial cultures. Geomicrobiol J. doi:10.1080/01490451.2015.1099763

  • Banerjee SC (2000) Prevention and combating mine fires. Balkema Publishers, Rotterdam

    Google Scholar 

  • Bingham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  Google Scholar 

  • Blodau C (2004) Evidence for a hydrologically controlled iron cycle in acidic and iron rich sediments. Aquat Sci 66:47–59

    Article  CAS  Google Scholar 

  • Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci Total Environ 369:307–332

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. Treatise Geochem 9:149–204

    Article  Google Scholar 

  • Bozcu M, Akgun F, Gurdal G, Yesilyurt SK, Karaca O (2008) Sedimentologic, petrologic, geochemical and palinologic examination of Çan Yenice Bayramic (Çanakkale) lignite basin. Report of the Scientific and Technological Research Council of Turkey, Ankara

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2007) Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands. Geochim Cosmochim Acta 71:4456–4473

    Article  CAS  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron sulfide formation. Geochim Cosmochim Acta 72:4551–4564

    Article  CAS  Google Scholar 

  • Butler TW (2007) Isotope geochemistry of drainage from an acid mine impaired watershed, Oakland, California. Appl Geochem 22:1416–1426

    Article  CAS  Google Scholar 

  • Chen L, Li J, Chen Y, Huang L, Hua Z, Hu M, Shu W (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:2431–2444

    Article  CAS  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca Raton

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley, Weinheim

    Book  Google Scholar 

  • Cravotta CA (2008a) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. part 1: constituent quantities and correlations. Appl Geochem 23:166–202

    Article  CAS  Google Scholar 

  • Cravotta CA (2008b) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. part 2: geochemical controls on constituent concentrations. Appl Geochem 23:203–226

    Article  CAS  Google Scholar 

  • Dayal A (1984) Petrography of Yenice granite (Çanakkale) and related mines. Doctoral dissertation, geology engineering, graduate school of natural and applied sciences, Dokuz Eylul University

  • Descostes M, Mercier F, Beaucaire C, Zuddas P, Trocellier P (2001) Nature and distribution of chemical species on oxide pyrite surface: complementarity of XPS and nuclear microprobe analysis. Nucl Instrum Methods Phys Res 181:603–609

    Article  CAS  Google Scholar 

  • Dold B (2010) Basic concepts in environmental geochemistry of sulfidic mine-waste management waste management. In: Kumar ES (ed) Waste management. InTech, Rijeka, pp 173–198

    Google Scholar 

  • Dold B, Spangerberg JE (2005) Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles. Environ Sci Technol 39:5650–5656

    Article  CAS  Google Scholar 

  • Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganism. Environ Microbiol 14:2620–2631

    Article  CAS  Google Scholar 

  • Druschel GK, Hamers RJ, Banfield JF (2003) Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe3+. Geochim Cosmochim Acta 67:4457–4469

    Article  CAS  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13–32

    Article  CAS  Google Scholar 

  • Eary LE (1998) Predicting the effects of evapoconcentration on water quality in mine pit lakes. J Geochem Explor 64:223–236

    Article  CAS  Google Scholar 

  • Eary LE (1999) Geochemical and equilibrium trends in mine pit lakes. Appl Geochem 14:963–987

    Article  CAS  Google Scholar 

  • Ece OI, Schroeder PA, Smilley MJ, Wampler JM (2008) Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Miner 43:281–315

    Article  CAS  Google Scholar 

  • Elwood Madden ME, Madden AS, Rimstidt JD, Zahrai S, Kendall MR, Miller MA (2012) Jarosite dissolution rates and nanoscale mineralogy. Geochim Cosmochim Acta 91:306–321

    Article  CAS  Google Scholar 

  • Ercan T, Satır M, Sevin D, Turkecan A (1995) Interpretation of new chemical, isotopic and radiometric data on Cenozoic volcanic rocks of Western Anatolia. Direct Miner Res Explor Bull 119:103–112

    Google Scholar 

  • Ercan HE, Ece OI, Karacık Z (2013) Mineralogical and geochemical characterization of çan volcanics and related kaolin deposits, Canakkale, Turkey. 13th international scientific geoconference, Bulgaria, pp 121–128

  • Espana JS, Pamo EL, Pastor ES, Ercilla MD (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287

    Article  CAS  Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25:141–199

    Article  CAS  Google Scholar 

  • Fennemore GG, Neller WC, Davis A (1998) Modelling pyrite oxidation in arid environments. Environ Sci Technol 32:2680–2687

    Article  CAS  Google Scholar 

  • Field CW (1966) Sulfur isotope method for discriminating between sulfates of hypogene and supergene origin. Econ Geol 61:1428–1435

    Article  CAS  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  CAS  Google Scholar 

  • Friese K, Hupfer M, Schultze M (1998) Chemical characteristics of water and sediment in acidic mining lakes of the Lusatian Lignite District. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Berlin, pp 25–45

    Chapter  Google Scholar 

  • Fry B, Ruf W, Gest H, Hayes JM (1988) Sulfur isotope effects associated with the non-biological oxidation of sulfide in aqueous solution. Chem Geol 73:205–210

    CAS  Google Scholar 

  • Garrels RM, Thompson ME (1960) Oxidation of pyrite by iron sulfate solution. Am J Sci 258:57–67

    Article  Google Scholar 

  • Gavelin S, Parwel A, Ryhage R (1960) Sulfur isotope fractionation in sulfide mineralization. Econ Geol 55:510–530

    Article  CAS  Google Scholar 

  • Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol 33:999–1043

    Article  CAS  Google Scholar 

  • Growitz DJ, Reed LA, Beard MM (1985) Reconnaissance of mine drainage in the coal fields of eastern Pennsylvanian. United States Geological Survey

  • Gunduz O, Baba A (2008) Fate of acidic mining lakes in Can lignite district, Turkey. Proceedings of 36th IAH congress, Toyama, pp 1–7

  • Gurdal G (2011) Abundances and modes of occurrence of trace elements in the Can coals (Miocene), Canakkale-Turkey. Int J Coal Geol 87:157–173

    Article  CAS  Google Scholar 

  • Gurdal G, Bozcu M (2011) Petrographic characteristics and depositional environment of Miocene Çan coals, Çanakkale-Turkey. Int J Coal Geol 85:143–160

    Article  CAS  Google Scholar 

  • Hackley KC, Anderson TF (1986) Sulfur isotopic variations in low-sulfur coals from the Rocky Mountain region. Geochim Cosmochim Acta 50:1703–1713

    Article  CAS  Google Scholar 

  • Hedin RS, Watzlaf GR, Nairn RW (1994) Passive treatment of acid mine drainage with limestone. J Environ Qual 23:1338–1345

    Article  CAS  Google Scholar 

  • Herlihy AT, Kaufmann PR, Mitch ME (1990) Regional estimates of acid mine drainage impact on streams in the Mid-Atlantic and southeastern United States. Water Soil Air Pollut 50:91–107

    Article  CAS  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, New York

    Google Scholar 

  • Holt BD, Kumar R (1991) Oxygen isotope fractionation for understanding the sulphur cycle. In: Krouse HR, Grinenko VA (eds) Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment. Wiley, New York, pp 27–41

    Google Scholar 

  • Hubbard CG, Black S, Coleman ML (2009) Aqueous geochemistry and oxygen isotope compositions of acid mine drainage from the Río Tinto, SW Spain, highlight inconsistencies in current models. Chem Geol 265:321–334

    Article  CAS  Google Scholar 

  • ITASHY (2005) Regulation on the waters quality on human consumption. Official Gazette dated 17/02/2005, Number: 25730, AnkaraTurkey

  • Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low ph: fundamental and applied aspects. Front Microbiol 3:1–13

    Article  Google Scholar 

  • Jönsson J, Jönsson J, Lövgren L (2006) Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl Geochem 21:437–445

    Article  CAS  Google Scholar 

  • Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase formation, sulphate release and surface properties. Appl Geochem 20:179–191

    Article  CAS  Google Scholar 

  • Karakas G, Brookland I, Boehrer B (2003) Physical characteristics of acidic mining lake 111. Aquat Sci 65:297–307

    Article  Google Scholar 

  • Kempton JH, Locke W, Atkins D, Nicholson A (2000) Probabilistic quantification of uncertainty in predicting mine pit-lake water quality. Mining Eng 52:59–63

    CAS  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals. Int J Coal Geol 78:135–148

    Article  CAS  Google Scholar 

  • Kilham K, Firestone MK, McColl JG (1983) Acid rain and soil microbial activity: effects and their mechanisms. J Environ Qual 12:133–137

    Article  Google Scholar 

  • Klapper H, Schultze M (1995) Geogenically acidified mining lakes-living conditions and possibilities of restoration. Hydrobiology 80:639–653

    CAS  Google Scholar 

  • Knoller K, Fauville A, Mayer B, Strauch G, Friese K, Veizer J (2004) Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany. Chem Geol 204:303–323

    Article  CAS  Google Scholar 

  • Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342

    Article  CAS  Google Scholar 

  • Krushensky RD (1976) Neogene calc-alkaline extrusive and intrusive rocks of the Karalar Yesiller area, Northwest Anatolia, Turkey. Bull Volcanol 40:336–360

    Google Scholar 

  • Kupka D, Kupsakova I (1999) Iron (II) oxidation kinetics in Thiobacillus ferrooxidans in the presence of heavy metals. Proc Metal 9:387–396

    Article  Google Scholar 

  • Kusel K (2003) Microbial cycling of iron and sulfur in acidic coal mining lake sediments. Water Air Soil Pollut 3:67–90

    Article  Google Scholar 

  • Kwong YTJ, Lawrence JR (1998) Acid generation and metal immobilization in the vicinity of a naturally acidic lake in Central Yukon Territory, Canada. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes: Acid mine drainage, limnology and reclamation. Springer, Berlin, pp 65–86

    Chapter  Google Scholar 

  • Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400

    Article  CAS  Google Scholar 

  • Mandernack KW, Lynch L, Krouse HR, Morgan MD (2000) Sulfur cycling in wetland peat of the New Jersey Pinelands and its affect on stream water chemistry. Geochim Cosmochim Acta 64:3949–3964

    Article  CAS  Google Scholar 

  • McCready RGL, Krouse HR (1982) Sulfur isotope fractionation during the oxidation of elemental sulfur by Thiobacilli in a Solonetzic soil. Can J Soil Sci 62:105–110

    Article  CAS  Google Scholar 

  • McGuire MM, Jallad KN, Ben-Amotz D, Hamers RJ (2001) Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy. Appl Surf Sci 178:105–115

    Article  CAS  Google Scholar 

  • Menekse M (2012) Investigation of microbial diversity of lake Acigol, a hypersaline lake in southern Turkey, and their influence on biomineralization in the lake. Masters thesis, Department of Advanced Technologies Molecular Biology Genetics and Biotechnology Programme, Graduate School of Science Engineering and Technology, Istanbul Technical University

  • Migaszewski ZM, Galuszka A, Halas S, Dołęgowska S, Dąbek J, Starnawska E (2008) Geochemistry and stable sulfur and oxygen isotope ratios of the Podwiśniówska pit pond water generated by acid mine drainage (Holy Cross Mountains, south-central Poland). Appl Geochem 23:3620–3634

    Article  CAS  Google Scholar 

  • Miller GC, Lyons WB, Davis A (1996) Understanding the water quality of pit lakes. Environ Sci Technol 30:118–123

    Article  Google Scholar 

  • Mills AL, Herlihy AT (1985) Microbial ecology and acidic pollution of impoundments. In: Gunnison D (ed) Microbial process in reservoirs. Dr. W Junk Publishers, The Hague, pp 169–189

    Chapter  Google Scholar 

  • Nakai N, Jensen ML (1964) The kinetic isotope effect in the bacterial reduction and oxidation of sulfur. Geochim Cosmochim Acta 28:1893–1912

    Article  CAS  Google Scholar 

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulfate weathering. Soil Sci Am Pub, pp. 37–56

  • Nordstrom DK (2003) Effects of microbiological and geochemical interactions in mine drainage. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineral Association of Canada Short Course Series, pp 227–238

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Logsdon GS, Plumlee MB (eds) The environmental geochemistry of mineral deposits Part A Processes methods and health issues., Part A. Processes methods and health issuesSociety of Economic Geologists, Littleton, pp 133–160

    Google Scholar 

  • Nordstrom DK, Southam G (1999) Geomicrobiology of sulfide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiology. Interactions between microbes and minerals. Mineralogical Society of America, pp 361–390

  • Nordstrom DK, Alpers CN, Ptacek C, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258

    Article  CAS  Google Scholar 

  • Okumusoglu D, Gunduz O (2013) Hydrochemical status of an acidic mining lake in Can-Canakkale, Turkey. Water Environ Res 85:604–620

    Article  CAS  Google Scholar 

  • Ozdilek HG (2013) Rainwater quality in Canakkale between 2010 and 2013. International Conference on Environmental Science and Technology, Nevsehir, p 119

  • Peiffer S, Knorr KH, Blodau C (2013) The role of iron minerals in the biogeochemistry of acidic pit lakes. In: Geller W, Schultz M, Kleinmann B, Wolkersdorfer C (eds) Acidic pit lakes. The legacy of coal and metal surface mines series. Springer, Berlin, pp 42–57

    Google Scholar 

  • Peine A, Tritschler A, Küsel K, Peiffer S (2000) Electron flow in an iron-rich acidic sediment-evidence for an acidity-driven iron cycle. Limnol Oceanogr 45:1077–1087

    Article  CAS  Google Scholar 

  • Pellicori DA, Gammons CH, Poulson SR (2005) Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Appl Geochem 20:2116–2137

    Article  CAS  Google Scholar 

  • Pesic B, Oliver DJ, Wichlacz P (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotech Bioeng 33:428–439

    Article  CAS  Google Scholar 

  • Pietsch W (1979) Zur hydrochemischen situation der tagebauseen des lausitzer braunkohlen-reviers. Arch Naturchutz Landschaftsforschung 19:97–115

    CAS  Google Scholar 

  • Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239

    Article  CAS  Google Scholar 

  • Regenspurg S, Gößner A, Peiffer S, Küsel K (2002) Potential remobilization of toxic anions during reduction of arsenated and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Acidiphiliumcryptum JF-5. Water Air Soil Pollut 2:57–67

    Article  CAS  Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197

    Article  CAS  Google Scholar 

  • Rigol A, Mateu J, Gonzalez-Nunez R, Rauret G, Vidal M (2009) pH stat vs. single extraction tests to evaluate heavy metals and arsenic leachability in environmental samples. Anal Chim Acta 632:69–79

    Article  CAS  Google Scholar 

  • Rohwerder T, Sand W (2007) Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng Life Sci 7:301–309

    Article  CAS  Google Scholar 

  • Rye RO, Alpers CN (1997) The stable isotope geochemistry of jarosite. United States Geological Survey

  • Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87:225–262

    Article  CAS  Google Scholar 

  • Sakai H (1957) Fractionation of sulfur isotopes in nature. Geochim Cosmochim Ac 12:150–169

    Article  CAS  Google Scholar 

  • Sanliyuksel Yucel D (2013) Characteristics of acidic water resources, factors enabling their formation and hydrogeochemical properties (Can-Bayramic; Biga Peninsula). Doctoral dissertation in Geology Engineering, Graduate School of Natural and Applied Sciences, Canakkale Onsekiz Mart University

  • Sanliyuksel Yucel D, Baba A (2013) Geochemical characterization of acid mine lakes and their effect on the environment, NW of Turkey. Arch Environ Contam Toxicol 64:357–376

    Article  CAS  Google Scholar 

  • Sanlıyuksel Yucel D, Yucel MA, Baba A (2014) Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environ Earth Sci 72:4311–4323

    Article  CAS  Google Scholar 

  • Sasaki K, Tsunekawa T, Ohtsuka T, Konno H (1995) Confirmation of sulfur-rich layer formed on pyrite after dissolution by Fe(III) ions around pH 2. Geochim Cosmochim Acta 59:3155–3158

    Article  CAS  Google Scholar 

  • Schippers A (2004) Biogeochmistry of metal sulfide oxidation in mining environments, sediments and soils, sulfur biogeochemistry-past and present. In: Amend JP, Edwards KJ, Lyons TW (eds) Geological Society of America, pp 49–62

  • Schippers A, Sand W (1999) Bacterial Leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  Google Scholar 

  • Schippers A, Jozsa PG, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431

    CAS  Google Scholar 

  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350

    Article  CAS  Google Scholar 

  • Schwertmann U, Carlson L (2005) The pH-dependent transformation of schwertmannite to goethite at 25 C. Clay Miner 40:63–66

    Article  CAS  Google Scholar 

  • Seal RR (2003) Stable-isotope geochemistry of mine waters and related solids. In: Jambor JL, Blowes DW, Ritchie IM (eds) Environmental aspects of mine wastes. Short Course Series, Mineralogical Association of Canada, pp 303–334

    Google Scholar 

  • Seal RR, Hammarstrom JM, Johnson AN, Piatak NM, Wandless GA (2008) Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco mine, Virginia, USA. Appl Geochem 23:320–342

    Article  CAS  Google Scholar 

  • Shevenell L, Connors KA, Henry CD (1999) Controls on pit lake water quality at sixteen open-pit mines in Nevada. Appl Geochem 14:669–687

    Article  CAS  Google Scholar 

  • Silva LFO, Izquierdo M, Querol X, Finkelman RB, Oliveira MLS, Wollenschlager M et al (2011a) Leaching of potential hazardous elements of coal cleaning rejects. Environ Monit Assess 175:109–126

    Article  CAS  Google Scholar 

  • Silva LFO, Oliveira MLS, Neace ER, O’Keefe JMK, Henke KR, Hower JC (2011b) Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. Int J Coal Geol 85:237–245

    Article  CAS  Google Scholar 

  • Singer PC, Stumm W (1968) Kinetics of the oxidation of ferrous iron. Symposium on coal mine drainage research. Pittsburgh, PA, pp 12–34

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate determining step. Science 167:1121–1123

    Article  CAS  Google Scholar 

  • Siyako M, Burkan KA, Okay AI (1989) Tertiary geology and hydrocarbon potential of the Biga and Gelibolu Peninsulas. Bull Turk Assoc Petrol Geol Bull 1:183–199

    Google Scholar 

  • Smith JW, Batts BD (1974) The distribution and isotopic composition of sulfur in coal. Geochim Cosmochim Acta 38:121–133

    Article  CAS  Google Scholar 

  • Smuda J, Dold B, Spangenberg JE, Pfeifer HR (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76

    Article  CAS  Google Scholar 

  • Sracek O, Choquette M, Gélinas P, Lefebvre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. J Contam Hydrol 69:45–71

    Article  CAS  Google Scholar 

  • SRK Consulting (2012) Preliminary economic assessment technical report for the Halilaga Project, Turkey. Report Prepared for Truva Bakir Maden Isletmeleri Inc. and Pilot Gold Inc. Report Prepared by SRK Consulting, Canada

  • Sulzman EW (2007) Stable isotope chemistry and measurement: a primer. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, pp 1–21

  • Swaine DJ (1990) Trace elements in coal. Butterworths, London

    Google Scholar 

  • Taylor BE, Wheeler MC (1994) Sulfur and oxygen isotope geochemistry of acid mine drainage in the Western United States. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series, pp 481–514

  • Taylor BE, Wheeler MC, Nordstrom DK (1984a) Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation. Nature 308:538–541

    Article  CAS  Google Scholar 

  • Taylor BE, Wheeler MC, Nordstrom DK (1984b) Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite. Geochim Cosmochim Acta 48:2669–2678

    Article  CAS  Google Scholar 

  • Tempel RN, Shevenell LA, Lechler P, Price J (2000) Geochemical modeling approach to predicting arsenic concentrations in a mine pit lake. Appl Geochem 15:475–492

    Article  CAS  Google Scholar 

  • Trettin R, Glaser HR, Schultze M, Strauch G (2007) Sulfur isotope studies to quantify sulfate components in water of flooded lignite open pits-Lake Goitsche, Germany. Appl Geochem 22:69–89

    Article  CAS  Google Scholar 

  • Tuncali E, Ciftci B, Yavuz N, Toprak S, Koker A, Aycik H, Gencer A et al (2002) Chemical and technological properties of Turkish tertiary coals. Mineral Research & Exploration General Directorate Publication, Ankara

    Google Scholar 

  • United States Environmental Protection Agency (2012) Edition of the drinking water standards and health advisories United States Environmental Protection Agency. https://rais.ornl.gov/documents/2012_drinking_water.pdf

  • Van Everdingen RO, Krouse HR (1985) Isotope composition of sulphates generated by bacterial and abiological oxidation. Nature 315:395–396

    Article  Google Scholar 

  • Van Stempvoort DR, Krouse HR (1994) Controls of δ18O in sulfate: Review of experimental data and application to specific environments. In: Jambor JL, Blowes DW, Ritchie IM (eds) Environmental aspects of mine wastes., Short Course SeriesMineralogical Association of Canada, Ottawa, pp 447–479

    Google Scholar 

  • Vithana CL, Sullivan LA, Burton ED, Bush RT (2015) Stability of schwertmannite and jarosite in an acidic landscape: prolonged field incubation. Geoderma 240:47–57

    Article  CAS  Google Scholar 

  • World Health Association (2011) Guidelines for drinking-water quality (4th ed). http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf

  • Yigit O (2012) A prospective sector in the Tethyan metallogenic belt: geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geol Rev 46:118–148

    Article  Google Scholar 

  • Yucel MA, Sanliyuksel Yucel D, Baba A (2013) Determining and monitoring of acid mine lakes using satellite images and geographic information system (GIS) in Can County, NW Turkey. 40th IAH Congress, Perth, p 195

Download references

Acknowledgments

The authors are grateful to Mehmet Ali Yucel for support during field work. This study was funded by the Teck Mining Company. Funding was also provided by a TUBITAK grant to N. Balci (108Y177) for isotope analysis. The authors are also thankful for constructive comments by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Sanliyuksel Yucel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanliyuksel Yucel, D., Balci, N. & Baba, A. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey. Arch Environ Contam Toxicol 70, 757–782 (2016). https://doi.org/10.1007/s00244-016-0270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0270-z

Keywords

Navigation