Skip to main content
Log in

Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9–54 %) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17–32, 7–22, and 54–82 %, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17–32, 10–29, and 36–46 %, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24–0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Álvarez-Ayuso E, Querol X, Tomás A (2006) Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products. Chemosphere 65(11):2009–2017

    Article  Google Scholar 

  • Cao Y et al (2005) Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOx burners. Energy Fuels 19(3):842–854

    Article  CAS  Google Scholar 

  • Cao Y et al (2008) Impacts of halogen additions on mercury oxidation in a slipstream selective catalyst reduction (SCR) reactor when burning sub-bituminous coal. Environ Sci Technol 42(1):256–261

    Article  CAS  Google Scholar 

  • Feng X, Qiu G (2008) Mercury pollution in Guizhou, Southwestern China—an overview. Sci Total Environ 400(1–3):227–237

    Article  CAS  Google Scholar 

  • Finkelman RB (1993) Trace and minor elements in coal. In: Engelm MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 593–607

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107(2):641–662

    Article  CAS  Google Scholar 

  • Galbreath KC, Zygarlicke CJ, Olson ES, Pavlish JH, Toman DL (2000) Evaluating mercury transformation mechanisms in a laboratory scale combustion system. Sci Total Environ 261(1–3):149–155

    Article  CAS  Google Scholar 

  • Goodarzi F (2006) Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel 85(10–11):1418–1427

    Article  CAS  Google Scholar 

  • Ito S, Yokoyama T, Asakura K (2006) Emissions of mercury and other trace elements from coal-fired power plants in Japan. Sci Total Environ 368(1):397–402

    Article  CAS  Google Scholar 

  • Jiang G-B, Shi J-B, Feng X-B (2006) Mercury pollution in China. Environ Sci Technol 40(12):3672–3678

    Article  CAS  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78(2):135–148

    Article  CAS  Google Scholar 

  • Kikkawa H, Nakamoto T, Morishita M, Yamada K (2002) New wet FGD process using granular limestone. Ind Eng Chem Res 41(12):3028–3036

    Article  CAS  Google Scholar 

  • Lee SJ et al (2006) Speciation and mass distribution of mercury in a bituminous coal-fired power plant. Atmospheric Environ 40(12):2215–2224

    Article  CAS  Google Scholar 

  • Liu G, Vassilev SV, Gao L, Zheng L, Peng Z (2005a) Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Convers Manag 46(13–14):2001–2009

    Article  CAS  Google Scholar 

  • Liu G, Zheng L, Gao L, Zhang H, Peng Z (2005b) The characterization of coal quality from the Jining coalfield. Energy 30(10):1903–1914

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58(15):3191–3198

    Article  CAS  Google Scholar 

  • Meij R (1995) The distribution of trace elements during the combustion of coal. In: Swaine D, Goodarzi F (eds) Environmental aspects of trace elements in coal., Energy and Environment SeriesSpringer, Netherlands, pp 111–127

    Chapter  Google Scholar 

  • Meij R, Vredenbregt LHJ, Winkel HT (2002) The fate and behavior of mercury in coal-fired power plants. J Air Waste Manag Assoc 52(8):185

    Article  Google Scholar 

  • National Academy of Engineering and National Research Council (2008) Energy futures and urban air pollution challenges for China and the United States. National Academies Press, Washington, DC

    Google Scholar 

  • Otero-Rey JR et al (2003) As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Environ Sci Technol 37(22):5262–5267

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40(22):4048–4063

    Article  CAS  Google Scholar 

  • Pacyna EG et al (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44(20):2487–2499

    Article  CAS  Google Scholar 

  • Payette RM, Wolfe WE, Beeghly J (1997) Use of clean coal combustion by-products in highway repairs. Fuel 76(8):749–753

    Article  CAS  Google Scholar 

  • Pirrone N et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964

    Article  CAS  Google Scholar 

  • Solem-Tishmack JK et al (1995) High-calcium coal combustion by-products: engineering properties, ettringite formation, and potential application in solidification and stabilization of selenium and boron. Cement Concrete Res 25(3):658–670

    Article  CAS  Google Scholar 

  • Stehouwer RC, Sutton P, Dick WA (1995) Minespoil amendment with dry flue gas desulfurization by-products: plant growth. J Environ Qual 24(5):861–869

    Article  CAS  Google Scholar 

  • Streets DG et al (2005) Anthropogenic mercury emissions in China. Atmos Environ 39(40):7789–7806

    Article  CAS  Google Scholar 

  • Streets DG, Hao J, Wang S, Wu Y (2009a) Mercury emissions from coal combustion in China. In: Mason R, Pirrone N (eds) Mercury fate and transport in the global atmosphere. Springer, New York, pp 51–65

    Chapter  Google Scholar 

  • Streets DG, Zhang Q, Wu Y (2009b) Projections of global mercury emissions in 2050. Environ Sci Technol 43(8):2983–2988

    Article  CAS  Google Scholar 

  • Sun R, Liu G, Zheng L, Chou C-L (2010a) Characteristics of coal quality and their relationship with coal-forming environment: a case study from the Zhuji exploration area, Huainan coalfield, Anhui, China. Energy 35(1):423–435

    Article  CAS  Google Scholar 

  • Sun R, Liu G, Zheng L, Chou C-L (2010b) Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. Int J Coal Geol 81(2):81–96

    Article  CAS  Google Scholar 

  • Sun R et al (2013) Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chem Geol 336:103–111

    Article  CAS  Google Scholar 

  • Tang XY, Huang WH (2004) Trace elements in Chinese coals. Commercial Affairs Press, Beijing

    Google Scholar 

  • Tang S, Feng X, Qiu J, Yin G, Yang Z (2007) Mercury speciation and emissions from coal combustion in Guiyang, southwest China. Environ Res 105(2):175–182

    Article  CAS  Google Scholar 

  • Tang Q, Liu G, Yan Z, Sun R (2012) Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China. Fuel 95:334–339

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1997) Mercury study report to congress. USEPA, Washington, DC

    Google Scholar 

  • United States Environmental Protection Agency (2002a) Control of mercury emissions from coal-fired electric utility boilers. EPA-600/R-01-109, USEPA, Washington, DC

  • United States Environmental Protection Agency (2002b) ICR data. USEPA. http://www.epa.gov/ttn/atw/combust/utiltox/icrdata.xls.

  • United States Environmental Protection Agency-1631E (2002) Mercury in water by oxidation, purge and trap, and cold vapor at fluorescence spectrometry

  • United States Environmental Protection Agency-7473 (1998) Mercury in solids and solutions by thermal decomposition, amalgamation, and at adsorption spectrophotometry

  • USEPA (2006) Characterization of mercury-enriched coal combustion residues from electric utilities using enhanced sorbents for mercury control. USEPA, Washingotn, DC

    Google Scholar 

  • Wang Q, Shen W, Ma Z (2000) Estimation of mercury emission from coal combustion in China. Environ Sci Technol 34(13):2711–2713

    Article  CAS  Google Scholar 

  • Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—A literature review. Environ Pollut 131(2):323–336

    Article  Google Scholar 

  • Wang Y et al (2009) Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Process Technol 90(5):643–651

    Article  CAS  Google Scholar 

  • Wang SX et al (2010) Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 10(3):1183–1192

    Article  CAS  Google Scholar 

  • Wu Y et al (2006) Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 40(17):5312–5318

    Article  CAS  Google Scholar 

  • Yokoyama T, Asakura K, Matsuda H, Ito S, Noda N (2000) Mercury emissions from a coal-fired power plant in Japan. Sci Total Environ 259(1–3):97–103

    Article  CAS  Google Scholar 

  • Yudovich YE, Ketris MP (2005) Mercury in coal: a review—Part 2. Coal use and environmental problems. Int J Coal Geol 62(3):135–165

    Article  CAS  Google Scholar 

  • Zhang MQ, Zhu YC, Deng RW (2002) Evaluation of mercury emissions to the atmosphere from coal combustion, China. Ambio 31(6):482–484

    Article  Google Scholar 

  • Zhang L, Zhuo Y, Chen L, Xu X, Chen C (2008) Mercury emissions from six coal-fired power plants in China. Fuel Process Technol 89(11):1033–1040

    Article  CAS  Google Scholar 

  • Zhang L, Wang S, Meng Y, Hao J (2012) Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environ Sci Technol 46(11):6385–6392

    Article  CAS  Google Scholar 

  • Zhang L et al (2015) Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environ Sci Technol 49(5):3185–3194

    Article  CAS  Google Scholar 

  • Zheng L, Liu G, Chou C (2007) The distribution, occurrence and environmental effect of mercury in Chinese coals. Sci Total Environ 384(1–3):374–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Basic Research Program of China (973 Program 2014CB238903); the China Postdoctoral Science (Special) Foundation (Grants No. 2014M551821 and 2015T80668); and the Anhui Provincial Natural Science Foundation (Grant No. 1608085QD73). Four anonymous reviewers and the editor are thanked for constructive comments that significantly improved the quality of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijian Liu or Ruoyu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Liu, G. & Sun, R. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China. Arch Environ Contam Toxicol 70, 724–733 (2016). https://doi.org/10.1007/s00244-016-0267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0267-7

Keywords

Navigation