Skip to main content

Advertisement

Log in

Climate and Physiography Predict Mercury Concentrations in Game Fish Species in Quebec Lakes Better than Anthropogenic Disturbances

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The fluctuations of mercury levels (Hg) in fish consumed by sport fishers in North-Eastern America depend upon a plethora of interrelated biological and abiological factors. To identify the dominant factors ultimately controlling fish Hg concentrations, we compiled mercury levels (Hg) during the 1976–2010 period in 90 large natural lakes in Quebec (Canada) for two major game species: northern pike (Esox lucius) and walleye (Sander vitreus). Our statistical analysis included 28 geographic information system variables and 15 climatic variables, including sulfate deposition. Higher winter temperatures explained 36 % of the variability in higher walleye growth rates, in turn accounting for 54 % of the variability in lower Hg concentrations. For northern pike, the dominance of a flat topography in the watershed explained 31 % of the variability in lower Hg concentrations. Higher mean annual temperatures explained 27 % of the variability in higher pike Hg concentrations. Pelagic versus littoral preferred habitats for walleye and pike respectively could explain the contrasted effect of temperature between the two species. Heavy logging could only explain 2 % of the increase in walleye Hg concentrations. The influence of mining on fish Hg concentrations appeared to be masked by climatic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahams MV, Kattenfeld MG (1997) The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav Ecol Sociobiol 40:169–174. doi:10.1007/s002650050330

    Article  Google Scholar 

  • Beaulne J-S, Lucotte M, Paquet S, Canuel R (2012) Modeling mercury concentrations in northern pikes and walleyes from frequently fished lakes of Abitibi-Témiscamingue (Québec, Canada): a GIS approach. Boreal Environ Res 17:277–290

    CAS  Google Scholar 

  • Bishop K et al (2009) The effects of forestry on Hg bioaccumulation in nemoral/boreal waters and recommendations for good silvicultural practice. AMBIO J Hum Environ 38:373–380. doi:10.1579/0044-7447-38.7.373

    Article  CAS  Google Scholar 

  • Bodaly RA, Rudd JWM, Fudge RJP, Kelly CA (1993) Mercury concentrations in fish related to size of remote Canadian Shield Lakes. Can J Fish Aquat Sci 50:980–987. doi:10.1139/f93-113

    Article  CAS  Google Scholar 

  • Bodaly RA, Jansen WA, Majewski AR, Fudge RJP, Strange NE, Derksen AJ, Green DJ (2007) Postimpoundment time course of increased mercury concentrations in fish in hydroelectric reservoirs of Northern Manitoba, Canada. Arch Environ Contam Toxicol 53:379–389. doi:10.1007/s00244-006-0113-4

    Article  CAS  Google Scholar 

  • Burns DA, Riva-Murray K, Bradley PM, Aiken GR, Brigham ME (2012) Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA. J Geophys Res Biogeosci 117:G01034. doi:10.1029/2011JG001812

    Google Scholar 

  • CAPMoN Environment Canada CAPMoN Website

  • Carrie J, Wang F, Sanei H, Macdonald RW, Outridge PM, Stern GA (2010) Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate. Environ Sci Technol 44:316–322. doi:10.1021/es902582y

    Article  CAS  Google Scholar 

  • de Wit HA, Granhus A, Lindholm M, Kainz MJ, Lin Y, Braaten HFV, Blaszczak J (2014) Forest harvest effects on mercury in streams and biota in Norwegian boreal catchments. Forest Ecol Manag 324:52–63. doi:10.1016/j.foreco.2014.03.044

    Article  Google Scholar 

  • Depew DC, Burgess NM, Campbell LM (2013) Modelling mercury concentrations in prey fish: derivation of a national-scale common indicator of dietary mercury exposure for piscivorous fish and wildlife. Environ Pollut 176:234–243. doi:10.1016/j.envpol.2013.01.024

    Article  CAS  Google Scholar 

  • Desrosiers M, Planas D, Mucci A (2006) Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes. Can J Fish Aquat Sci 63:1734–1745. doi:10.1139/f06-077

    Article  CAS  Google Scholar 

  • Drenner RW, Chumchal MM, Jones CM, Lehmann CMB, Gay DA, Donato DI (2013) Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South Central United States. Environ Sci Technol 47:1274–1279. doi:10.1021/es303734n

    Article  CAS  Google Scholar 

  • Eckley CS, Branfireun B, Diamond M, Van Metre PC, Heitmuller F (2008) Atmospheric mercury accumulation and washoff processes on impervious urban surfaces. Atmos Environ 42:7429–7438. doi:10.1016/j.atmosenv.2008.06.013

    Article  CAS  Google Scholar 

  • French TD, Campbell LM, Jackson DA, Casselman JM, Scheider WA, Hayton A (2006) Long-term changes in legacy trace organic contaminants and mercury in Lake Ontario salmon in relation to source controls, trophodynamics, and climatic variability. Limnol Oceanogr 51:2794–2807. doi:10.4319/lo.2006.51.6.2794

    Article  Google Scholar 

  • Fulton RJ (1995) Surficial materials of Canada. Geological survey of Canada, Map 1880A, scale 1: 5 000 000

  • Gantner N, Muir DC, Power M, Iqaluk D, Reist JD, Babaluk JA, Meili M, Borg H, Hammar H, Michaud W, Dempson B, Solomon KR (2010a) Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part II: influence of lake biotic and abiotic characteristics on geographic trends in 27 populations. Environ Toxicol Chem 29:633–643

    Article  CAS  Google Scholar 

  • Gantner N, Power M, Iqaluk D, Meili M, Borg H, Sundbom M, Solomon K, Lawson G, Muir DC (2010b) Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part I: insights from trophic relationships in 18 lakes. Environ Toxicol Chem 29:621–632

    Article  CAS  Google Scholar 

  • Garcia E, Carignan R (1999) Impact of wildfire and clear-cutting in the boreal forest on methyl mercury in zooplankton. Can J Fish Aquat Sci 56:339–345. doi:10.1139/f98-164

    Article  Google Scholar 

  • Garcia E, Carignan R (2000) Mercury concentrations in northern pike (Esox lucius) from boreal lakes with logged, burned, or undisturbed catchments. Can J Fish Aquat Sci 57:129–135. doi:10.1139/f00-126

    Article  CAS  Google Scholar 

  • Garcia E, Carignan R (2005) Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen. Environ Toxicol Chem 24:685–693. doi:10.1897/04-065r.1

    Article  CAS  Google Scholar 

  • Golden HE et al (2012) Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: insights from dynamic modeling and data. J Geophys Res Biogeosci 117:G01006. doi:10.1029/2011JG001806

    Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723. doi:10.1021/es203658f

    Article  CAS  Google Scholar 

  • GRASS Development Team. GRASS Geographic Resources Analysis Support System. Open Source Geospatial Foundation Project 2011

  • Graydon JA et al (2012) The role of terrestrial vegetation in atmospheric Hg deposition: pools and fluxes of spike and ambient Hg from the experiment. Global Biogeochem Cycles 26:1022. doi:10.1029/2011GB004031

    Article  Google Scholar 

  • Greenfield BK, Hrabik TR, Harvey CJ, Carpenter SR (2001) Predicting mercury levels in yellow perch: use of water chemistry, trophic ecology, and spatial traits. Can J Fish Aquat Sci 58:1419–1429. doi:10.1139/f01-088

    Article  CAS  Google Scholar 

  • Harris R, Bodaly RA (1998) Temperature, growth and dietary effects on fish mercury dynamics in two Ontario lakes. Biogeochemistry 40:175–187. doi:10.1023/A:1005986505407

    Article  CAS  Google Scholar 

  • Harris RC et al (2007) Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Natl Acad Sci 104:16586–16591. doi:10.1073/pnas.0704186104

    Article  CAS  Google Scholar 

  • Health-Canada. http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/environ/mercur/merc_fish_qa-poisson_qr-eng.php

  • Henderson BA, Morgan GE, Vaillancourt A (2004) Growth, ingestion rates and metabolic activity of walleye in lakes with and without lake herring. J Fish Biol 65:1270–1282. doi:10.1111/j.0022-1112.2004.00527.x

    Article  Google Scholar 

  • Holmes J, Lean D (2006) Factors that influence methylmercury flux rates from wetland sediments. Sci Total Environ 368:306–319. doi:10.1016/j.scitotenv.2005.11.027

    Article  CAS  Google Scholar 

  • Hongve D, Haaland S, Riise G, Blakar I, Norton S (2012) Decline of acid rain enhances mercury concentrations in fish. Environ Sci Technol 46:2490–2491. doi:10.1021/es3002629

    Article  CAS  Google Scholar 

  • Hrabik TR, Watras CJ (2002) Recent declines in mercury concentration in a freshwater fishery: isolating the effects of de-acidification and decreased atmospheric mercury deposition in Little Rock Lake. Sci Total Environ 297:229–237. doi:10.1016/S0048-9697(02)00138-9

    Article  CAS  Google Scholar 

  • Johnston TA, Leggett WC, Bodaly RA, Swanson HK (2003) Temporal changes in mercury bioaccumulation by predatory fishes of boreal lakes following the invasion of an exotic forage fish. Environ Toxicol Chem 22:2057–2062. doi:10.1897/02-265

    Article  CAS  Google Scholar 

  • King JR, Shuter BJ, Zimmerman AP (1999) Signals of climate trends and extreme events in the thermal stratification pattern of multibasin Lake Opeongo, Ontario. Can J Fish Aquat Sci 56:847–852. doi:10.1139/f99-020

    Article  Google Scholar 

  • Lacoul P, Freedman B, Clair T (2011) Effects of acidification on aquatic biota in Atlantic Canada. Environ Rev 19:429–460. doi:10.1139/a11-016

    Article  CAS  Google Scholar 

  • Lavigne M, Lucotte M, Paquet S (2010) Relationship between mercury concentration and growth rates for Walleyes, Northern Pike, and Lake Trout from Quebec Lakes. N Am J Fish Manag 30:1221–1237. doi:10.1577/M08-065.1

    Article  Google Scholar 

  • Lepak JM, Robinson JM, Kraft CE, Josephson DC (2009) Changes in mercury bioaccumulation in an apex predator in response to removal of an introduced competitor. Ecotoxicology 18:488–498. doi:10.1007/s10646-009-0306-5

    Article  CAS  Google Scholar 

  • Lester NP, Dextrase AJ, Kushneriuk RS, Rawson MR, Ryan PA (2004) Light and temperature: key factors affecting walleye abundance and production. Trans Am Fish Soc 133:588–605. doi:10.1577/T02-111.1

    Article  Google Scholar 

  • Lucotte M, Mucci A, Hillaire-Marcel C, Pichet P, Grondin A (1995) Anthropogenic mercury enrichment in remote lakes of northern Québec (Canada). Water Air Soil Pollut 80:467–476. doi:10.1007/bf01189696

    Article  CAS  Google Scholar 

  • Lucotte M, Montgomery S, Bégin M (1999a) Mercury dynamics at the flooded soil-water interface in reservoirs of Northern Québec: in situ observations. In: Lucotte M, Schetagne R, Thérien N, Langlois C, Tremblay A (eds) Mercury in the biogeochemical cycle. Environmental science. Springer, Berlin, pp 165–189. doi:10.1007/978-3-642-60160-6_9

    Chapter  Google Scholar 

  • Lucotte M, Schetagne R, Thérien N, Langlois C, Tremblay A (1999b) Mercury in the biogeochemical cycle. Springer, Berlin

    Book  Google Scholar 

  • Meng B et al (2010) Influence of eutrophication on the distribution of total mercury and methylmercury in hydroelectric reservoirs. J Environ Qual 39:1624–1635. doi:10.2134/jeq2009.0440

    Article  CAS  Google Scholar 

  • Moingt M, Lucotte M, Paquet S, Beaulne J-S (2013) The influence of anthropogenic disturbances and watershed morphological characteristics on Hg dynamics in Northern Quebec large boreal lakes. Adv Environ Res 2:81–98

    Article  Google Scholar 

  • Monson B et al (2011) Spatiotemporal trends of mercury in walleye and largemouth bass from the Laurentian Great Lakes region. Ecotoxicology 20:1555–1567. doi:10.1007/s10646-011-0715-0

    Article  CAS  Google Scholar 

  • Montgomery S, Lucotte M, Rheault I (2000) Temporal and spatial influences of flooding on dissolved mercury in boreal reservoirs. Sci Total Environ 260:147–157. doi:10.1016/S0048-9697(00)00559-3

    Article  CAS  Google Scholar 

  • Neff MR, Robinson JM, Bhavsar SP (2013) Assessment of fish mercury levels in the upper St. Lawrence River, Canada. J Great Lakes Res 39:336–343. doi:10.1016/j.jglr.2013.03.005

    Article  CAS  Google Scholar 

  • Neteler M, Mitasova H (2008) Open source GIS a GRASS GIS approach. Springer, New-York, p 383

    Book  Google Scholar 

  • Petit S, Lucotte M, Teisserenc R (2011) Mercury sources and bioavailability in lakes located in the mining district of Chibougamau, eastern Canada. Appl Geochem 26:230–241. doi:10.1016/j.apgeochem.2010.11.023

    Article  CAS  Google Scholar 

  • Porvari P, Verta M, Munthe J, Haapanen M (2003) Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environ Sci Technol 37:2389–2393. doi:10.1021/es0340174

    Article  CAS  Google Scholar 

  • Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project 2011

  • Quist MC, Guy CS, Bernot RJ, Stephen JL (2002) Seasonal variation in condition, growth and food habits of walleye in a Great Plains reservoir and simulated effects of an altered thermal regime. J Fish Biol 61:1329–1344. doi:10.1111/j.1095-8649.2002.tb02480.x

    Article  Google Scholar 

  • Ramlal PS, Kelly CA, Rudd JWM, Furutani A (1993) Sites of methyl mercury production in remote canadian shield. Can J Fish Aquat Sci 50:972–979. doi:10.1139/f93-112

    Article  CAS  Google Scholar 

  • Rennie MD, Collins NC, Purchase CF, Tremblay A (2005) Predictive models of benthic invertebrate methylmercury in Ontario and Quebec lakes. Can J Fish Aquat Sci 62:2770–2783. doi:10.1139/f05-181

    Article  CAS  Google Scholar 

  • Rennie MD, Sprules WG, Vaillancourt A (2010) Changes in fish condition and mercury vary by region, not Bythotrephes invasion: a result of climate change? Ecography 33:471–482. doi:10.1111/j.1600-0587.2009.06160.x

    Google Scholar 

  • Ricker WE (1980) Computation and interpretation of biological statistics of fish populations. Bulletin 191 of the Fisheries Research Board of Canada

  • Roué-LeGall A, Lucotte M, Carreau J, Canuel R, Garcia E (2005) Development of an ecosystem sensitivity model regarding mercury levels in fish using a preference modeling methodology: application to the canadian boreal system. Environ Sci Technol 39:9412–9423. doi:10.1021/es048220q

    Article  Google Scholar 

  • Roy V, Amyot M, Carignan R (2009) Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients. Environ Sci Technol 43:5605–5611. doi:10.1021/es901193x

    Article  CAS  Google Scholar 

  • Sampaio da Silva D, Lucotte M, Paquet S, Davidson R (2009) Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon. Environ Res 109:432–446. doi:10.1016/j.envres.2009.02.011

    Article  CAS  Google Scholar 

  • SAS Institute (2007) JMP version 7.0., Cary, North Carolina

  • Scheuhammer AM, Graham JE (1999) The bioaccumulation of mercury in aquatic organisms from two similar lakes with differing pH. Ecotoxicology 8:49–56. doi:10.1023/A:1008936910823

    Article  CAS  Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Bulletin 184, Fisheries Research Board of Canada

  • Simoneau M, Lucotte M, Garceau S, Laliberté D (2005) Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environ Res 98:73–82. doi:10.1016/j.envres.2004.08.002

    Article  CAS  Google Scholar 

  • Sonesten L (2003) Catchment area composition and water chemistry heavily affects mercury levels in perch (Perca Fluviatilis L.) in Circumneutral Lakes. Water Air Soil Poll 144:117–139. doi:10.1023/A:1022974530406

    Article  CAS  Google Scholar 

  • Sørensen R, Meili M, Lambertsson L, von Brömssen C, Bishop K (2009) The effects of forest harvest operations on mercury and methylmercury in two boreal streams: relatively small changes in the first two years prior to site preparation. AMBIO J Hum Environ 38:364–372. doi:10.1579/0044-7447-38.7.364

    Article  Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, Beaty KG, Bloom NS, Flett RJ (1994) Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can J Fish Aquat Sci 51:1065–1076. doi:10.1139/f94-106

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, Beaty KG, Flett RJ, Roulet NT (1996) Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environ Sci Technol 30:2719–2729. doi:10.1021/es950856h

    Article  CAS  Google Scholar 

  • Surette C, Lucotte M, Tremblay A (2006) Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Québec. Sci Total Environ 368:248–261. doi:10.1016/j.scitotenv.2005.09.038

    Article  CAS  Google Scholar 

  • Teisserenc R, Lucotte M, Houel S (2011) Terrestrial organic matter biomarkers as tracers of Hg sources in lake sediments. Biogeochemistry 103:235–244. doi:10.1007/s10533-010-9458-x

    Article  CAS  Google Scholar 

  • Tremblay G, Legendre P, Doyon J-F, Verdon R, Schetagne R (1998) The use of polynomial regression analysis with indicator variables for interpretation of mercury in fish data. Biogeochemistry 40:189–201. doi:10.1023/A:1005997430906

    Article  CAS  Google Scholar 

  • UNEP (2013) Global mercury assessment: sources, emissions, releases, and environmental transport. UNEP

  • US-EPA. http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/index.cfm

  • Verta M, Salo S, Korhonen M, Porvari P, Paloheimo A, Munthe J (2010) Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes. Sci Total Environ 408:3639–3647. doi:10.1016/j.scitotenv.2010.05.006

    Article  CAS  Google Scholar 

  • Weech SA, Scheuhammer AM, Elliott JE, Cheng KM (2004) Mercury in fish from the Pinchi Lake Region, British Columbia, Canada. Environ Pollut 131:275–286. doi:10.1016/j.envpol.2004.02.016

    Article  CAS  Google Scholar 

  • Weis IM (2004) Mercury concentrations in fish from Canadian Great Lakes areas of concern: an analysis of data from the Canadian Department of Environment database. Environ Res 95:341–350. doi:10.1016/j.envres.2004.01.013

    Article  CAS  Google Scholar 

  • Winch S, Mills HJ, Kostka JE, Fortin D, Lean DRS (2009) Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiol Ecol 68(1):94–107. doi:10.1111/j.1574-6941.2009.00658.x

    Article  CAS  Google Scholar 

  • Wyn B, Kidd KA, Burgess NM, Curry RA, Munkittrick KR (2010) Increasing mercury in yellow perch at a Hotspot in Atlantic Canada, Kejimkujik National Park. Environ Sci Technol 44:9176–9181. doi:10.1021/es1018114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided by the National Sciences and Engineering Research Council of Canada-Discovery, Environment Canada Clean Air Regulatory Agenda (CARA) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Moingt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucotte, M., Paquet, S. & Moingt, M. Climate and Physiography Predict Mercury Concentrations in Game Fish Species in Quebec Lakes Better than Anthropogenic Disturbances. Arch Environ Contam Toxicol 70, 710–723 (2016). https://doi.org/10.1007/s00244-016-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0261-0

Keywords

Navigation