Advertisement

Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy

  • France Collard
  • Bernard Gilbert
  • Gauthier Eppe
  • Eric Parmentier
  • Krishna Das
Article

Abstract

Microplastic particles (MP) contaminate oceans and affect marine organisms in several ways. Ingestion combined with food intake is generally reported. However, data interpretation often is circumvented by the difficulty to separate MP from bulk samples. Visual examination often is used as one or the only step to sort these particles. However, color, size, and shape are insufficient and often unreliable criteria. We present an extraction method based on hypochlorite digestion and isolation of MP from the membrane by sonication. The protocol is especially well adapted to a subsequent analysis by Raman spectroscopy. The method avoids fluorescence problems, allowing better identification of anthropogenic particles (AP) from stomach contents of fish by Raman spectroscopy. It was developed with commercial samples of microplastics and cotton along with stomach contents from three different Clupeiformes fishes: Clupea harengus, Sardina pilchardus, and Engraulis encrasicolus. The optimized digestion and isolation protocol showed no visible impact on microplastics and cotton particles while the Raman spectroscopic spectrum allowed the precise identification of microplastics and textile fibers. Thirty-five particles were isolated from nine fish stomach contents. Raman analysis has confirmed 11 microplastics and 13 fibers mainly made of cellulose or lignin. Some particles were not completely identified but contained artificial dyes. The novel approach developed in this manuscript should help to assess the presence, quantity, and composition of AP in planktivorous fish stomachs.

Keywords

Lignin Raman Spectroscopy Stomach Content NaClO Rose Bengal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), the Thalassa and Europe skippers, Yves Verin and Jean-Louis Bigot, and their scientist teams. This study was funded by the Fonds de la Recherche Scientifique (F.R.S.-FNRS). F. Collard acknowledges a PhD Fund for Research Training in Industry and in Agriculture (F.R.I.A.) grant. K. Das is a F.R.S-FNRS Research Associate. This paper is MARE publication nr. 290.

Supplementary material

244_2015_221_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Arthur C, Baker J and Bamford H (2009) In: Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. NOAA Technical Memorandum NOS-OR&R-30, 9–11 Sept 2008Google Scholar
  2. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998. doi: 10.1098/rstb.2008.0205 CrossRefGoogle Scholar
  3. Besseling E, Foekema EM, Van Franeker JA et al (2015) Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar Pollut Bull. doi: 10.1016/j.marpolbul.2015.04.007 Google Scholar
  4. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60:2275–2278. doi: 10.1016/j.marpolbul.2010.08.007 CrossRefGoogle Scholar
  5. Carpenter EJ, Smith KL Jr (1972) Plastics on the Sargasso sea surface. Science 175:1240–1241CrossRefGoogle Scholar
  6. Cheshire A, Adler E, Barbiere J et al (2009) UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter, UNEP regional seas reports and studies. Vol. IOC Technical Series No. 83Google Scholar
  7. Cho LL (2007) Identification of textile fiber by Raman microspectroscopy. Forensic Sci J 6:55–62Google Scholar
  8. Choy C, Drazen J (2013) Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar Ecol Prog Ser 485:155–163. doi: 10.3354/meps10342 CrossRefGoogle Scholar
  9. Christensen CE, McNeal SF, Eleazer P (2008) Effect of lowering the pH of sodium hypochlorite on dissolving tissue in vitro. J Endod 34:449–452. doi: 10.1016/j.joen.2008.01.001 CrossRefGoogle Scholar
  10. Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70:227–233CrossRefGoogle Scholar
  11. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597CrossRefGoogle Scholar
  12. Cole M, Webb H, Lindeque PK et al (2014) Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep 4:4528. doi: 10.1038/srep04528 Google Scholar
  13. Cózar A, Echevarría F, González-Gordillo JI et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci USA 111:10239–10244. doi: 10.1073/pnas.1314705111 CrossRefGoogle Scholar
  14. Cunha ME, Garrido S, Pissarra J (2005) The use of stomach fullness and colour indices to assess Sardina pilchardus feeding. J Mar Biol Assoc UK 85:425–431. doi: 10.1017/S0025315405011367h CrossRefGoogle Scholar
  15. Davison P, Asch RG (2011) Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser 432:173–180CrossRefGoogle Scholar
  16. Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852. doi: 10.1016/S0025-326X(02)00220-5 CrossRefGoogle Scholar
  17. Dixon TJ, Dixon TR (1983) Marine litter distribution and composition in the North Sea. Mar Pollut Bull 14:145–148. doi: 10.1016/0025-326X(83)90068-1 CrossRefGoogle Scholar
  18. Eriksen M, Lebreton LCM, Carson HS et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9:e111913. doi: 10.1371/journal.pone.0111913 CrossRefGoogle Scholar
  19. Evjemo JO, Reitan KI, Olsen Y (2003) Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture 227:191–210. doi: 10.1016/S0044-8486(03)00503-9 CrossRefGoogle Scholar
  20. Foekema EM, De Gruijter C, Mergia MT et al (2013) Plastic in north sea fish. Environ Sci Technol 47:8818–8824. doi: 10.1021/es400931b Google Scholar
  21. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075CrossRefGoogle Scholar
  22. Horsman PV (1982) The amount of garbage pollution from merchant ships. Mar Pollut Bull 13:167–169. doi: 10.1016/0025-326X(82)90088-1 CrossRefGoogle Scholar
  23. Howell EA, Bograd SJ, Morishige C et al (2012) On North Pacific circulation and associated marine debris concentration. Mar Pollut Bull 65:16–22CrossRefGoogle Scholar
  24. Ivar do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364. doi: 10.1016/j.envpol.2013.10.036 CrossRefGoogle Scholar
  25. Ivar do Sul JA, Spengler A, Costa MF (2009) Here, there and everywhere. Small plastic fragments and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic). Mar Pollut Bull 58:1236–1238. doi: 10.1016/j.marpolbul.2009.05.004 CrossRefGoogle Scholar
  26. Law KL, Thompson RC (2014) Oceans. Microplastics in the seas. Science 345:144–145. doi: 10.1126/science.1254065 CrossRefGoogle Scholar
  27. Law KL, Morét-Ferguson S, Maximenko NA et al (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188. doi: 10.1126/science.1192321 CrossRefGoogle Scholar
  28. Lepot L (2011) Application de la spectroscopie Raman à l’analyse de colorants sur fibres de coton dans le contexte de la criminalistique. Dissertation, University of Liege, BelgiumGoogle Scholar
  29. Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200. doi: 10.1016/j.marpolbul.2010.10.013 CrossRefGoogle Scholar
  30. Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99CrossRefGoogle Scholar
  31. Merrell TR (1980) Accumulation of plastic litter on beaches of Amchitka Island, Alaska. Mar Environ Res 3:171–184. doi: 10.1016/0141-1136(80)90025-2 CrossRefGoogle Scholar
  32. Möllmann C, Kornilovs G, Fetter M, Köster FW (2004) Feeding ecology of central Baltic Sea herring and sprat. J Fish Biol 65:1563–1581. doi: 10.1111/j.1095-8649.2004.00566.x CrossRefGoogle Scholar
  33. Moore C, Moore S, Leecaster M, Weisberg S (2001) A comparison of plastic and plankton in the North Pacific Central Gyre. Mar Pollut Bull 42:1297–1300. doi: 10.1016/S0025-326X(01)00114-X CrossRefGoogle Scholar
  34. Morton WE, Hearle JWS (2008) Physical properties of textile fibres, 4th edn. Elsevier Ltd., AmsterdamCrossRefGoogle Scholar
  35. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62:1207–1217CrossRefGoogle Scholar
  36. Ohman MD (1997) On the determination of zooplankton lipid content and the occurrence of gelatinous copepods. J Plankton Res 19:1235–1250CrossRefGoogle Scholar
  37. OSPAR (2007) OSPAR Pilot project on monitoring marine beach litter. Monit Mar Litter OSPAR Reg. p 74Google Scholar
  38. Plastics Europe (2015) Plastics—the Facts 2014/2015: an analysis of European plastics production, demand and waste data. http://www.plasticseurope.org/Document/plastics-the-facts-20142015.aspx?Page=DOCUMENT&FolID=2. Accessed 29 June 2015
  39. PlasticsEurope (2013) Plastics—the Facts 2013: an analysis of European latest plastics production, demand and waste data. http://www.plasticseurope.org/Document/plastics-the-facts-2013.aspx?Page=DOCUMENT&FolID=2. Accessed 29 June 2015
  40. Plounevez S, Champalbert G (1999) Feeding behaviour and trophic environment of Engraulis encrasicolus (L.) in the Bay of Biscay. Estuar Coast Shelf Sci 49:177–191. doi: 10.1006/ecss.1999.0497 CrossRefGoogle Scholar
  41. Possatto FE, Barletta M, Costa MF et al (2011) Plastic debris ingestion by marine catfish: an unexpected fisheries impact. Mar Pollut Bull 62:1098–1102. doi: 10.1016/j.marpolbul.2011.01.036 CrossRefGoogle Scholar
  42. Pruter AT (1987) Sources, quantities and distribution of persistent plastics in the marine environment. Mar Pollut Bull 18:305–310. doi: 10.1016/S0025-326X(87)80016-4 CrossRefGoogle Scholar
  43. Ryan PG, Moloney CL (1993) Marine litter keeps increasing. Nature 361:23CrossRefGoogle Scholar
  44. Spickett CM, Jerlich A, Panasenko OM et al (2000) The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim Pol 47:889–899Google Scholar
  45. Stojicic S, Zivkovic S, Qian W et al (2010) Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant. J Endod 36:1558–1562CrossRefGoogle Scholar
  46. Thompson R (2006) Plastic debris in the marine environment: consequences and solutions. In: Krause J, Von Nordheim H, Brager S (eds) Marine Nature Conservation in Europe. Bundesamt fur Naturschutz, Stralsund, pp 107–116Google Scholar
  47. Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838. doi: 10.1126/science.1094559 CrossRefGoogle Scholar
  48. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70. doi: 10.1016/j.envpol.2014.06.010 CrossRefGoogle Scholar
  49. Van der Lingen CD, Bertrand A, Bode A et al (2009) Trophic dynamics of small pelagic fish. In: Checkley D, Roy C, Alheit J, Oozeki Y (eds) Climate change and small pelagic fish. Cambridge University Press, Cambridge, pp 112–157Google Scholar
  50. Woodall LC, Sanchez-Vidal A, Paterson GLJ et al (2014) The deep sea is a major sink for microplastic debris. R Soc Open Sci 1:140317. doi: 10.1098/rsos.140317 CrossRefGoogle Scholar
  51. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • France Collard
    • 1
    • 2
  • Bernard Gilbert
    • 3
  • Gauthier Eppe
    • 3
  • Eric Parmentier
    • 1
  • Krishna Das
    • 2
  1. 1.Laboratory of Functional and Evolutionary Morphology, AFFISH-RCUniversity of LiegeLiègeBelgium
  2. 2.Laboratory of Oceanology – MARE CenterUniversity of LiegeLiègeBelgium
  3. 3.Inorganic Analytical Chemistry Laboratory, Department of ChemistryUniversity of LiegeLiègeBelgium

Personalised recommendations