Skip to main content
Log in

Salinity-Dependent Nickel Accumulation and Oxidative Stress Responses in the Euryhaline Killifish (Fundulus heteroclitus)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The mechanisms of nickel (Ni) toxicity in marine fish remain unclear, although evidence from freshwater (FW) fish suggests that Ni can act as a pro-oxidant. This study investigated the oxidative stress effects of Ni on the euryhaline killifish (Fundulus heteroclitus) as a function of salinity. Killifish were exposed to sublethal levels (5, 10, and 20 mg L−1) of waterborne Ni for 96 h in FW (0 ppt) and 100 % saltwater (SW) (35 ppt). In general, SW was protective against both Ni accumulation and indicators of oxidative stress [protein carbonyl formation and catalase (CAT) activity]. This effect was most pronounced at the highest Ni exposure level. For example, FW intestine showed increased Ni accumulation relative to SW intestine at 20 mg Ni L−1, and this was accompanied by significantly greater protein carbonylation and CAT activity in this tissue. There were exceptions, however, in that although liver of FW killifish at the highest exposure concentration showed greater Ni accumulation relative to SW liver, levels of CAT activity were greatly decreased. This may relate to tissue- and salinity-specific differences in oxidative stress responses. The results of the present study suggest (1) that there was Ni-induced oxidative stress in killifish, (2) that the effects of salinity depend on differences in the physiology of the fish in FW versus SW, and (3) that increased levels of cations (sodium, calcium, potassium, and magnesium) and anions (SO4 and Cl) in SW are likely protective against Ni accumulation in tissues exposed to the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bainy ACD, Saito E, Carvalho PSM, Junqueira VBC (2006) Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat Toxicol 34:151–162

    Article  Google Scholar 

  • Blewett T, MacLatchy D, Wood CM (2013) The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus). Aquat Toxicol 127:61–71

    Article  CAS  Google Scholar 

  • Blom S, Andresson TB, Forlin L (2000) Effects of food deprivation and handling stress on head kidney 17 alpha-hydroxyprogesterone 21-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout. Aquat Toxicol 48:265–274

    Article  CAS  Google Scholar 

  • Boyden CR (1975) Distribution of some trace metals in Poole Harbour, Dorset. Mar Pollut Bull 6:180–187

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brix KV, Keithly JT, DeForest DK, Laughlin T (2004) Acute and chronic toxicity of nickel to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23:2221–2228

    Article  CAS  Google Scholar 

  • Burnett KG, Bain LJ, Baldwin WS et al (2007) Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. Comp Biochem Physiol D 2:257–286

    Google Scholar 

  • Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23

    Article  CAS  Google Scholar 

  • Büsselberg D (1995) Calcium channels as target sites of heavy metals. Toxicol Lett 82(83):255–261

    Article  Google Scholar 

  • Campbell PGC, Kraemer LD, Giguere A, Hare L, Hontela A (2008) Subcellular distribution of cadmium and nickel in chronically exposed wild fish: inferences regarding metal detoxification strategies and implications for setting water quality guidelines for dissolved metals. Hum Ecol Risk Assess 14:290–316

    Article  CAS  Google Scholar 

  • Cartañà J, Romeu A, Arola L (1992) Effects of copper, cadmium and nickel on liver and kidney glutathione reductase redox cycle of rats (Rattus sp.). Comp Biochem Physiol C 101:209–213

    Article  Google Scholar 

  • Chowdhury MJ, Bucking C, Wood CM (2008) Pre-exposure to waterborne nickel downregulates gastrointestinal nickel uptake in rainbow trout: indirect evidence for nickel essentiality. Environ Sci Technol 42:1359–1364

    Article  CAS  Google Scholar 

  • Clairborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  • Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Ann Rev Pharmacol Toxicol 32:545–571

    Article  Google Scholar 

  • Craig PM, Wood CM, McClelland GB (2007) Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 293:R1882–R1892

    Article  CAS  Google Scholar 

  • Deleebeeck NME, De Schamphelaere KAC, Janssen CR (2007) A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters. Ecotoxicol Environ Saf 67:1–13

    Article  CAS  Google Scholar 

  • Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. US Geological Survey, Biological Resources Division, Biological Science Report 1998–2001

  • European Chemicals Bureau (ECB) (2008) European Union risk assessment report: Nickel. Ispra (IT) European Commission, Joint Research Centre, European Chemicals Bureau. Available at: http://ecb.jrc.ec.europa.eu/DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/REPORT/nickelreport311.pdf

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  • Eyckmans M, Blust R, De Boeck G (2012) Subcellular difference in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu. Aquat Toxicol 118:97–107

    Article  Google Scholar 

  • Faverney CR, Devaux A, Lafaurie M, Girard JP, Rahmani R (2001) Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes. Arch Environ Contam Toxicol 41:129–141

    Article  CAS  Google Scholar 

  • Glennon JD, Sarkar B (1982) Nickel(II) transport in human blood serum: studies of nickel(II) binding to human albumin and to native-sequence peptide, and ternary-complex formation with L-histidine. Biochem J 203:15–23

    CAS  Google Scholar 

  • Glover CN, Hogstrand C (2002) In vivo characterisation of intestinal zinc uptake in freshwater rainbow trout. J Exp Biol 205:141–150

    CAS  Google Scholar 

  • Grosell M (2012) Copper. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of essential metals, fish physiology, vol 31A. Academic Press, London

    Google Scholar 

  • Hauser-Davis RA, Bastos FF, de Oliveira TF, Ziolli RL, de Campos RC (2012) Fish bile as a biomarker of metal exposure. Mar Pollut Bull 64:1589–1595

    Article  CAS  Google Scholar 

  • Hwang PP, Lee TS, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301:R28–R47

    Article  CAS  Google Scholar 

  • Jiann KT, Wen LS, Santschi PH (2005) Trace metal (Cd, Cu, Ni, and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Mar Chem 96:293–313

    Article  CAS  Google Scholar 

  • Khan FR, McGeer JC (2013) Zn-stimulated mucus secretion in the rainbow trout (Oncorhynchus mykiss) intestine inhibits Cd accumulation and Cd-induced lipid peroxidation. Aquat Toxicol 142:17–25

    Article  Google Scholar 

  • Krȩżel A, Szczepanik W, Sokołowska M, Jeżowska-Bojczuk M, Bal W (2003) Correlations between complexation modes and redox activities of Ni(II)-GSH complexes. Chem Res Toxicol 16:855–864

    Article  Google Scholar 

  • Kubrak OI, Husak VV, Rovenko BM, Poigner H, Mazepa MA, Kriews M et al (2012a) Tissue specificity in nickel uptake and induction of oxidative stress in kidney and spleen of goldfish Carassius auratus exposed to waterborne nickel. Aquat Toxicol 118:88–96

    Article  Google Scholar 

  • Kubrak OI, Rovenko BM, Husak VV, Storey JM, Storey KB, Lushchak VI (2012b) Nickel induces hyperglycemia and glycogenolysis and affects the antioxidant system in liver and white muscle of goldfish Carassius auratus L. Ecotoxicol Environ Saf 80:231–237

    Article  CAS  Google Scholar 

  • Kubrak OI, Husak VV, Rovenko BM, Poigner H, Kriews M, Abele D, Lushchak VI (2013) Antioxidant system efficiently protects goldfish gills from Ni2+-induced oxidative stress. Chemosphere 90:971–976

    Article  CAS  Google Scholar 

  • Kubrak OI, Poigner H, Husak VV, Rovenko BM, Meyer S, Abele D et al (2014) Goldfish brain and heart are well protected from Ni2+-induced oxidative stress. Comp Biochem Physiol C 162:43–50

    Google Scholar 

  • Lapointe D, Couture P (2009) Influence of the route of exposure on the accumulation and subcellular distribution of nickel and thallium in juvenile fathead minnows (Pimephales promelas). Arch Environ Contam Toxicol 57:571–580

    Article  CAS  Google Scholar 

  • Lapointe D, Gentes S, Ponton DE, Hare L, Couture P (2009) Influence of prey type on nickel and thallium assimilation, subcellular distribution and effects in juvenile fathead minnows (Pimephales promelas). Environ Sci Technol 43:8665–8670

    Article  CAS  Google Scholar 

  • Leonard EM, Banerjee U, D’Silva JJ, Wood CM (2014) Chronic nickel bioaccumulation and sub-cellular fractionation in two freshwater teleosts, the round goby and the rainbow trout, exposed simultaneously to waterborne and dietary nickel. Aquat Toxicol 154:141–153

    Article  CAS  Google Scholar 

  • Loro VL, Jorge MB, da Silva KR, Wood CM (2012) Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat Toxicol 110:187–193

    Article  Google Scholar 

  • Lushchak V (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Martinez-Alvarez RM, Hidalgo MC, Domezain A, Morales AE, Garcia-Gallego M, Sanz A (2002) Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J Exp Biol 205:3699–3706

    CAS  Google Scholar 

  • Martino MA, Turner A, Nimmo A (2004) Distribution speciation and particle-water interactions of nickel in the Mersey estuary, UK. Mar Chem 88:161–177

    Article  CAS  Google Scholar 

  • Mate MJ, Zamocky M, Nykyri LM, Herzog C, Alzari PM, Betzel C et al (1999) Structure of catalase-A from Saccharomyces cerevisiae. J Mol Biol 286:135–149

    Article  CAS  Google Scholar 

  • National Academy of Sciences (1975) Medical and biological effects of environmental pollutants. Nickel. National Research Council, National Academy of Sciences, Washington, DC, p 277

    Google Scholar 

  • Nebeker AV, Savonen C, Stevens DG (1985) Sensitivity of rainbow trout early life stages to nickel chloride. Environ Toxicol Chem 4:233–239

    Article  CAS  Google Scholar 

  • Nielsen FH (1993) Is nickel nutritionally important? Nutr Today 28:14

    Article  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  Google Scholar 

  • Pane EF, Richards JG, Wood CM (2003a) Acute waterborne nickel toxicity in the rainbow trout (Oncorhynchus mykiss) occurs by a respiratory rather than ionoregulatory mechanism. Aquat Toxicol 63:65–82

    Article  CAS  Google Scholar 

  • Pane EF, Smith C, McGeer JC, Wood CM (2003b) Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna. Environ Sci Technol 37:4382–4389

    Article  CAS  Google Scholar 

  • Pane EF, Haque A, Goss GG, Wood CM (2004a) The physiological consequences of exposure to chronic, sublethal waterborne nickel in rainbow trout (Oncorhynchus mykiss): exercise vs resting physiology. J Exp Biol 207:1249–1261

    Article  CAS  Google Scholar 

  • Pane EF, Haque A, Wood CM (2004b) Mechanistic analysis of acute, Ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon. Aquat Toxicol 69:11–24

    Article  CAS  Google Scholar 

  • Pane EF, Bucking C, Patel M, Wood CM (2005) Renal function in the freshwater rainbow trout (Oncorhynchus mykiss) following acute and prolonged exposure to waterborne nickel. Aquat Toxicol 72:119–133

    Article  CAS  Google Scholar 

  • Paquin PR, Gorsuch JW, Apte S et al (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133:3–35

    Google Scholar 

  • Paucot H, Wollast R (1997) Transport and transformation of trace metals in the Scheldt estuary. Mar Chem 58:229–244

    Article  CAS  Google Scholar 

  • Perry SF (1997) The chloride cell: structure and function in the gills of freshwater fishes. Ann Rev Physiol 59:325–347

    Article  CAS  Google Scholar 

  • Predki PF, Harford C, Brar P, Sarkar B (1992) Further characterization of the N-terminal copper(II)-binding and nickel(II)-binding motif of proteins: studies of metal binding to chicken serum albumin and the native sequence peptide. Biochem J 287:211–215

    CAS  Google Scholar 

  • Pyle G, Couture P (2012) Nickel. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of essential metals, fish physiology, vol 31A. Academic Press, London

    Google Scholar 

  • Rodriguez RE, Misra M, Kasprzak KS (1990) Effects of nickel on catalase activity in vitro and in vivo. Toxicology 63:45–52

    Article  CAS  Google Scholar 

  • Sadiq M (1989) Nickel sorption and speciation in a marine environment. Hydrobiologia 176(177):225–232

    Article  Google Scholar 

  • Salnikow S, Gao M, Voitkun V, Costa M (1994) Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res 54:6407–6412

    CAS  Google Scholar 

  • Scott GR, Claiborne JB, Edwards SL, Schulte PM, Wood CM (2005) Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J Exp Biol 208:2719–2729

    Article  CAS  Google Scholar 

  • Sreedevi P, Suresh A, Sivaramakrishna B, Prabhavathi B, Radhakrishnaiah K (1992) Bioaccumulation of nickel in the organs of the freshwater fish, Cyprinus carpio, and the freshwater mussel, Lamellidens marginalis, under lethal and sublethal nickel stress. Chemosphere 24:29–36

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Torreilles J, Guerin MC (1990) Nickel(II) as a temporary catalyst for hydroxyl radical generation. FEBS Lett 272:58–60

    Article  CAS  Google Scholar 

  • Trenzado C, Hidalgo MC, García-Gallego M, Morales AE, Furné M, Domezain A et al (2006) Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss: a comparative study. Aquaculture 254:758–767

    Article  CAS  Google Scholar 

  • Wells ML, Smith GJ, Bruland WK (2000) The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI. Mar Chem 71:143–163

    Article  CAS  Google Scholar 

  • Wood CM (2001) Toxic responses of the gill. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts. Volume 1—Organs. Taylor & Francis, London, UK, pp 1–89

  • Wood CM (2012) An introduction to metals in fish physiology and toxicology: basic principles. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of non-essential metals, fish physiology, vol 31A. Academic Press, London

    Google Scholar 

  • World Health Organization (1991) Nickel. Environ Health Criteria 108:383

    Google Scholar 

  • Zhang PJ, Fu Q, Woods JG, Hou CG, Corkey Y, Collins S et al (2010) ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol 244:77–78

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by two NSERC CRD Grants awarded to Scott Smith and C. M. W. (principal investigators) with cofunding from the International Zinc Association, the International Lead Zinc Research Organization, the Nickel Producers Environmental Research Association, the International Copper Association, the Copper Development Association, Teck Resources, and Vale Inco. Thanks to Joe Gorsuch, Chris Schlekat, Mike Taylor, and the industrial partners for their helpful comments on the draft version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamzin A. Blewett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blewett, T.A., Wood, C.M. Salinity-Dependent Nickel Accumulation and Oxidative Stress Responses in the Euryhaline Killifish (Fundulus heteroclitus). Arch Environ Contam Toxicol 68, 382–394 (2015). https://doi.org/10.1007/s00244-014-0115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0115-6

Keywords

Navigation