Advertisement

A Critical Comparison of Different Approaches to Sediment-Quality Assessments in the Santos Estuarine System in Brazil

  • Ronaldo J. TorresEmail author
  • Augusto Cesar
  • Victor A. Pastor
  • Camilo D. S. Pereira
  • Rodrigo B. Choueri
  • Fernando S. Cortez
  • Rodofley D. Morais
  • Denis M. S. Abessa
  • Marcos R. L. do Nascimento
  • Cassia R. Morais
  • Pedro S. Fadini
  • Tomas A. Del Valls Casillas
  • Antônio A. Mozeto
Article

Abstract

This study focuses on the discussion of different lines of evidence (LoEs) applied to a sediment-quality assessment that considered the following: chemical concentrations of metals; polycyclic aromatic hydrocarbons (PAHs) in estuarine waters, sediments, and oysters (native and caged Crassostrea brasiliana); PAHs in semipermeable membrane devices (SPMDs); simultaneously extracted metals-acid volatile sulfides (SEM-AVS); benthic community assessment (the exploratory benthic index and the relative benthic index); chronic toxicity tests with the sea urchin Lytechinus variegatus; and bioaccumulation models. Significantly contaminated sediments from the Santos Estuarine System and the consequent toxicity of tested organisms were measured. Caged oysters presented bioaccumulation rates ≤2,500 % of total PAH content and 200 % of metal content when compared with control organisms from an uncontaminated area. SPMD results presented the same bioaccumulation pattern as caged oysters but at lower concentrations. Benthic communities presented some alterations, and there was a predominance of tolerant species in the inner part of the estuary. According to the SEM-AVS approach, metals should be assumed to be nonbioavailable, but experiments with transplanted C. brasiliana showed metal bioaccumulation, particularly in the cases of chromium, copper, mercury, and zinc. The weight-of-evidence approach was applied to compare and harmonize LoEs commonly used in sediment-quality assessments and to then classify estuary environments according to both their potential for having adverse effects on the biota and their possible ecological risks. All of the results of these approaches (except for SEM-AVS) were found to complement each other.

Keywords

PAHs PCBs Bioaccumulation Benthic Community Persistent Organic Pollutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Brazilian Ministry of Education – Coordenação de Aperfeiçoamento de Pessoal e Ensino Superior (CAPES Grant No. 099/06) and the Spanish Ministry of Education–Ministerio de Educación–Dirección General de Universidades (MECD/DGU No. PHB2005-0100-PC) for the Brazil-Spain International Cooperation Program. The R. J. Torres also thanks the Brazilian National Council for Scientific and Technological Development (CNPq) for a postdoctoral fellowship awarded to conclude this study. D. Abessa, A. Cesar, A. A. Mozeto, and C. D. S. Pereira thank CNPQ for the productivity fellowships awarded. T. A. Del Valls Casillas thanks the Ministry of Economy and Competitivity in Spain for partially funding his participation in this study through contracts CTM2011-28437-C02-02 and CTM2012-36476-C02-01. A special thanks is given to Danielle J. Deremo for the English language review.

References

  1. Associação Brasileira de Normas Técnicas (2006) Ecotoxicologia aquática–Toxicidade crônica de curta duração–Método de ensaio com ouriço-do-mar (Echinodermata: Echinoidea). ABNT-NBR No. 15350Google Scholar
  2. Abessa DMS, Carr RS, Rachid BRF, Sousa ECPM, Hortelani MA, Sarkis JE (2005) Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments. Mar Pollut Bull 50(8):875–885CrossRefGoogle Scholar
  3. Abessa DMS, Carr RS, Sousa ECPM, Rachid BRF, Zaroni LP, Pinto YA, et al. (2008) Integrative ecotoxicological assessment of a complex tropical estuarine system. In: Marine pollution: new research. Nova Science, New YorkGoogle Scholar
  4. Anderson BS, Hunt JW, Phillips BM, Fairey R, Roberts CA, Oakden JM et al (2001) Sediment quality in Los Angeles Harbor, USA: A triad assessment. Environ Toxicol Chem 20(2):359–370CrossRefGoogle Scholar
  5. Battelle (2003) Guide for incorporating bioavailability adjustments into human health and ecological risk assessments at U.S. Department of Defense Facilities. Part 1: Overview of metals bioavailability. United States Army Environmental Center, Naval Facilities Engineering Service Center and Air Force Center for Environmental ExcellenceGoogle Scholar
  6. Bícego MC, Taniguchi S, Yogui GT, Montone RC, Silva DAM, Lourenço RA et al (2006) Assessment of contamination by polychlorinated biphenyls and aliphatic and aromatic hydrocarbons in sediments of the Santos and São Vicente Estuary System, São Paulo, Brazil. Baseline. Mar Pollut Bull 52:1784–1832CrossRefGoogle Scholar
  7. Booij K, Smedes F, Van Weerlee EM, Konkoop PJC (2006) Environmental monitoring of hydrophobic organic contaminants: the case of mussels versus semipermeable membrane devices. Environ Sci Technol 40:3893–3900CrossRefGoogle Scholar
  8. Bordon ICAC, Sarkis JES, Gobbato GM, Hortellani MA, Peixoto CM (2011) Metal concentration in sediments from the Santos estuarine system: A recent assessment. J Braz Chem Soc 22:1858–1865CrossRefGoogle Scholar
  9. Calmano W (2002) Risk assessment of aquatic sediments—Recommendations and proposals for and integrated approach. In: SedNet Workshop: Chemical analysis and risk assessment of emerging contaminants in sediments and dredged material. Barcelona, Spain, pp 102–106Google Scholar
  10. Catharino MGM, Vasconcellos MBA, Sousa ECPM, Moreira EG, Pereira CDS (2008) Biomonitoring of Hg, Cd, Pb and other elements in coastal regions of São Paulo State, Brazil, using the transplanted mussel Perna perna (Linnaeus 1758). J Radioanal Nucl Chem 278:547–551CrossRefGoogle Scholar
  11. Cesar A, Marín A, Marín-Guirao L, Vita R (2004) Amphipoda and sea urchin tests to assess the toxicity of Mediterranean sediments: The case of Portmán Bay. Sci Mar 68(Suppl 1):205–213Google Scholar
  12. Cesar A, Pereira CDS, Santos AR, Abessa DMS, Fernandez N, Choueri RB et al (2006) Ecotoxicology assessment of sediments from Santos and São Vicente Estuarine System. Braz J Oceangr 54(1):55–63CrossRefGoogle Scholar
  13. Cesar A, Choueri RB, Riba I, Morales-Caselles C, Pereira CDS, Santos AR et al (2007) Comparative sediment quality assessment in different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and São Vicente estuarine system). Environ Int 33:429–435CrossRefGoogle Scholar
  14. Cesar A, Marín A, Marin-Guirao L, Vita R, Lloret J, DelValls TA (2009) Integrative ecotoxicological assessment of sediment in Portmán Bay (southeast Spain). Ecotoxicol Environ Saf 72:1832–1841CrossRefGoogle Scholar
  15. Chapman PM, Anderson J (2005) A decision-making framework for sediment contamination. Integr Environ Assess Manag 1(3):163–173CrossRefGoogle Scholar
  16. Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soil Sed 6(1):4–8CrossRefGoogle Scholar
  17. Chapman PM, Smith M (2012) Assessing, managing and monitoring contaminated aquatic sediments. Mar Pollut Bull 64:2000–2004CrossRefGoogle Scholar
  18. Choueri RB, Cesar A, Abessa DMS, Torres RJ, Morais RD, Riba I et al (2009) Development of site-specific sediment quality guidelines for North and South Atlantic littoral zones: Comparison against national and international sediment quality benchmarks. J Hazard Mater 170(1):320–331CrossRefGoogle Scholar
  19. Choueri RB, Cesar A, Abessa DMS, Torres RJ, Riba I, Pereira CDS et al (2010) Harmonized framework for ecological risk assessment of sediments from ports and estuarine zones of North and South Atlantic. Ecotoxicology 19:678–696CrossRefGoogle Scholar
  20. DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE et al (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemical using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583CrossRefGoogle Scholar
  21. Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227CrossRefGoogle Scholar
  22. Grasshoff K, Kremling K, Ehrardt M (1999) Methods of sewater analysis. Wiley VCH Verlag, WeinheimCrossRefGoogle Scholar
  23. Hill MK (2010) Understanding environmental pollution, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA et al (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36:85–91CrossRefGoogle Scholar
  25. Jonge M, Blust R, Bervoets L (2010) The relation between acid volatile sulfides (AVS) and metal accumulation in aquatic invertebrates: Implications of feeding behavior and ecology. Environ Pollut 158:1381–1391CrossRefGoogle Scholar
  26. Kimbrough KL, Johnson WE, Lauenstein GG, Christensen JD, Apeti DA (2008) An assessment of two decades of contaminant monitoring in the nation’s coastal zone. NOAA Technical Memorandum NOS NCCOS 74, NOAA, Silver Spring, MDGoogle Scholar
  27. Lamparelli ML, Costa MP, Prósperi VA, Bevilacqua JE, Araújo RPA, Eysink GGL et al (2001) Sistema estuarino de Santos e São Vicente. Relatório Técnico CETESB, São PauloGoogle Scholar
  28. Lotufo GR, Burton GA, Rosen G, Fleeger JW (2014) Assessing biological effects. In: Reible DD (ed) Processes, assessment and remediation of contaminated sediments. Springer, New York, pp 131–175CrossRefGoogle Scholar
  29. Lu XX, Hong Y, Reible DD (2014) Assessing bioavailability of hydrophobic organic compounds and metals in sediments using freely available porewater concentrations. In: Reible DD (ed) Processes, assessment and remediation of contaminated sediments. Springer, New York, pp 177–196CrossRefGoogle Scholar
  30. Martins CC, Bícego MC, Mahiques MM, Figueira RCL, Tessler MG, Montone RC (2010) Depositional history of sedimentary linear alkylbenzenes (LABs) in a large South American industrial coastal area (Santos Estuary, Southeastern Brazil). Environ Pollut 158(11):3355–3364CrossRefGoogle Scholar
  31. Medeiros PM, Bícego MC (2004) Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. I. Santos, SP—Brazil. Mar Pollut Bull 49:761–769CrossRefGoogle Scholar
  32. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566CrossRefGoogle Scholar
  33. National Research Council (NRC) (2003) Bioavailability of contaminants in soils and sediments: Processes, tools and applications. National Academies Press, Washington DCGoogle Scholar
  34. Odum EP, Barrett GW (2005) Fundamentals of ecology. Thomson Brooks/Cole, BelmontGoogle Scholar
  35. Pereira CDS, Martín-Díaz ML, Catharino MGM, Cesar A, Choueri RB, Taniguchi S et al (2012) Chronic contamination assessment integrating biomarkers’ responses in transplanted mussels: a seasonal monitoring. Environ Toxicol 27(5):257–267CrossRefGoogle Scholar
  36. Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quím Nova 27(5):771–780CrossRefGoogle Scholar
  37. Seo D, Vasconcellos MBA, Saiki M, Catharino MGM, Moreira EG, Sousa ECPM et al (2012) Vanadium biomonitoring by using Perna perna (Linnaeus 1758) mussels transplanted in the coast of the State of São Paulo, Brazil. J Radioanal Nucl Chem 291:101–105CrossRefGoogle Scholar
  38. Silva CAR, Smith BD, Rainbow PS (2006) Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Mar Environ Res 61(4):439–455CrossRefGoogle Scholar
  39. Simpson SL, Batley GE, Chariton AA, Stauber JL, King CK, Chapman JC et al (2005) Handbook for sediment quality assessment. CSIRO, BangorGoogle Scholar
  40. Spacie A, McCarty LS, Rand GM (1995) Bioaccumulation and bioavailability in multiphase systems. In: Rand GM (ed) Fundamentals of aquatic toxicology: Effects, environmental fate, and risk assessment (2nd edition). Taylor & Francis, Washington DCGoogle Scholar
  41. Suter G II (2007) Ecological risk assessment, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  42. Torres RJ (2007) Efeitos da dragagem sobre a qualidade dos sedimentos do canal do Porto de Santos (SP). Dissertation, Universidade Federal de São Carlos UFSCarGoogle Scholar
  43. Torres RJ, Abessa DMS, Santos FC, Maranho LA, Davanso MB, Nascimento MRL et al (2009) Effects of dredging operations on sediment quality: Contaminant mobilization in dredged sediments from the Port of Santos, SP. Brazil. J Soil Sed 9(5):420–432CrossRefGoogle Scholar
  44. United States Army Corps of Engineers (1998) Use of sediment quality guidelines (SQGs) in dredged material management. Dredging Research Technical Note EEDP-04-29Google Scholar
  45. United States Army Corps of Engineers (2009) BSAF Database. ERDC, EL. In: Lutz CL (ed). http://el.erdc.usace.army.mil/bsafnew/bsaf.html. Accessed 30 Jan 2011
  46. United States Environmental Protection Agency (USEPA) (1991) Methods for aquatic toxicity identification evaluations: Phase I. Toxicity characterization procedures (2nd edition). Final Report. EPA/600/6-91/003. Environmental Research Laboratory, Duluth, MNGoogle Scholar
  47. United States Environmental Protection Agency (1995) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. Office of Research and Development, USEPAGoogle Scholar
  48. United States Environmental Protection Agency (1996) Test methods for evaluating solid waste (SW-846). Office of Solid Waste, Economic, Methods, and Risk Analysis Division, USEPAGoogle Scholar
  49. United States Environmental Protection Agency (1998) Evaluation of dredged material proposed for discharge in waters of the U.S.: testing manual. USEPA/USACE EPA-823-B-98-004Google Scholar
  50. United States Environmental Protection Agency (2000a) Bioaccumulation testing and interpretation for the purpose of sediment quality assessment: Status and needs. EPA-823-R-00-001. Office of Water (4305), Office of Solid Waste (5307 W), USEPAGoogle Scholar
  51. United States Environmental Protection Agency (2000b) Technical basis for the derivation of equilibrium partitioning sediment guidelines (ESG) for the protection of benthic organisms: Nonionic organics. EPA-822-R-00-001Google Scholar
  52. United States Environmental Protection Agency (2001) Methods for collection, storage and manipulation of sediments for chemical and toxicological analysis: Technical manual. EPA-823-B-01-002Google Scholar
  53. United States Environmental Protection Agency (2003a) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. EPA/600/R-02/013RGoogle Scholar
  54. United States Environmental Protection Agency (2003b) A compendium of chemical, physical and biological methods for assessing and monitoring the remediation of contaminated sediment sites. No. 68-W-99-033Google Scholar
  55. United States Environmental Protection Agency (2005) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver and zinc). EPA/600/R-02/011RGoogle Scholar
  56. United States Environmental Protection Agency (2007) Framework for metal risk assessment. EPA-120/R-07/001Google Scholar
  57. VanStraalen NM (2008) Contaminant concentrations in organisms as indicators of bioavailability: A review of kinetic theory and the use of target species in biomonitoring. In: Naidu R (ed) Developments in soil science. Vol 32. pp 449–477Google Scholar
  58. Weiner ER (2008) Applications of environmental aquatic chemistry: a practical guide. CRC Press, Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  59. Wenning RJ, Batley GE, Ingersoll CG, Moore DW (2005) Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and ChemistryGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronaldo J. Torres
    • 1
    Email author
  • Augusto Cesar
    • 1
    • 2
    • 3
  • Victor A. Pastor
    • 3
  • Camilo D. S. Pereira
    • 1
    • 2
  • Rodrigo B. Choueri
    • 1
    • 2
  • Fernando S. Cortez
    • 2
  • Rodofley D. Morais
    • 4
  • Denis M. S. Abessa
    • 5
  • Marcos R. L. do Nascimento
    • 6
  • Cassia R. Morais
    • 7
  • Pedro S. Fadini
    • 7
  • Tomas A. Del Valls Casillas
    • 3
  • Antônio A. Mozeto
    • 7
  1. 1.Departamento de Ciências do Mar (DCMar) Campus Baixada SantistaUniversidade Federal de São Paulo (UNIFESP)SantosBrazil
  2. 2.Departamento de EcotoxicologiaUniversidade Santa CecíliaSantosBrazil
  3. 3.Cátedra UNESCO, UNITWIN/WiCop, Europe (Wise Coastal Practices for Sustainable Development), Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizCádizSpain
  4. 4.Centro de Estudos do MarUniversidade Federal do Paraná (CEM-UFPR)Pontal do ParanáBrazil
  5. 5.Campus Experimental do Litoral PaulistaUniversidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP)São VicenteBrazil
  6. 6.Laboratório de Poços de Caldas (LAPOC)Comissão Nacional de Energia Nuclear (CNEN)Poços de CaldasBrazil
  7. 7.Laboratório de Biogeoquímica Ambiental (LBGqA), Núcleo de Estudos Diagnósticos e Intervenções Ambientais (NEDIA), Departamento de QuímicaUFSCarSão CarlosBrazil

Personalised recommendations