Skip to main content

Advertisement

Log in

Arsenic and Fluoride Variations in Groundwater of an Endorheic Basin Undergoing Land-Use Changes

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The salt content of soil and water in endorheic basins within arid areas greatly restrict agricultural activities. Despite this limitation, these lands are increasingly used to accommodate new settlements and/or agricultural practices. This study focuses on the Laguna El Cuervo closed basin of northern Mexico and its underlying aquifer, which has been found to contain high concentrations of arsenic (As) and fluoride (F). The spatial distribution of As and F, their variations with time, and the impact of drought conditions and land-use changes were investigated using well data collected from a total of 27 wells in 2007, 2010, and 2011 (As data also collected in 2005). Four of these wells were used as monitoring wells. Data also included the As content of 140 surface sediments. Results showed that 54.5 % of the wells surpassed the As limit for drinking water of 0.025 mg L−1 and that 89.0 % surpassed he F limit of 1.5 mg L−1. Spatial analyses identified the areas in the center of the basin with the highest content of contaminants. Principal component and correlation analyses showed a co-occurrence of As and F with r = 0.55 for the 2011 data and 0.59 for the combined data. In contrast, the relationship of As and F concentrations to droughts and changes in land use were not as clearly shown, possibly because of the short time this area has been monitored. The high As and F concentrations in the groundwater may be limiting the availability of water within this basin, especially considering the greater groundwater demand foreseen for the future. Water-conservation practices, such as drip irrigation and artificial groundwater recharge, should be considered to maintain groundwater levels supportive of agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alarcón-Herrera MT, Montenegro I, Romero-Navar P, Martín-Domínguez IT, Vazquez R (2001a) Contenido del arsénico en el agua potable del Valle del Guadiana en México. Ing Hidráulica en México XVI 4:63–70

    Google Scholar 

  • Alarcón-Herrera MT, Martín-Domíguez IR, Trejo-Vazquez R, Rodríguez-Dozal S (2001b) Water fluoride, dental fluorosis, and bone fractures in the Guadiana Valley of Mexico. Fluoride 34(2):139–149

    Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    Article  CAS  Google Scholar 

  • Arreguin-Cortéz FI, Chávez Guillén R, Soto Navarro PR (2010) Una revisión de la presencia de arsenico en el agua subterránea de México. Rev Tlaloc 45:1–11

    Google Scholar 

  • Bodelón OG, Bernués M, Baltanás A, Montes C (1994) Conductividad y salinidad en los Ecosistemas Acuáticos del parque Nacional Doñana. Limnética 10(2):27–31

    Google Scholar 

  • Brito-Castillo L, Vivoni ER, Gochis DJ, Filinov A, Teleshchenko I, Monzon C (2010) An anomaly in the occurrence of the month of maximum precipitation distribution in northwest Mexico. J Arid Environ 74:531–539

    Article  Google Scholar 

  • Comisión Nacional del Agua (2008) Estudio de Disponibilidad de Agua en el Acuífero de Hormigas. CNA, México

    Google Scholar 

  • Del Razo LM, Corona JC, García Vargas G, Albores A, Cebrián ME (1993) Fluoride levels in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut 80:91–94

    Article  Google Scholar 

  • Dobson PF, Fayek F, Goodell PC, Ghezzehei TA, Melchor F, Murrell MT et al (2008) Stratigraphy of the PB-1 well, Nopal I Uranium Deposit, Sierra Peña Blanca, Chihuahua, Mexico. Int Geol Rev 50:959–974

  • Elmore AJ, Kaste JM, Okin GS, Fantle MS (2008) Groundwater influences on atmospheric dust generation in deserts. J Arid Environ 72:1753–1765

    Article  Google Scholar 

  • Espino-Valdés MS, Barrera-Prieto Y, Herrera-Peraza E (2009) Presencia del arsénico en la sección norte del acuífero Meoqui-Delicias, del estado de Chihuahua, México. Tec Chihuahua 3:8–18

    Google Scholar 

  • Espósito MM, Paoloni JD, Sequeira MA, Amiotti NM, Blanco MC (2011) Natural contaminants in drinking waters (arsenic, boron, fluorine and vanadium) in the Southern Pampean Plain, Argentina. J Environ Protect 2:97–108

    Article  Google Scholar 

  • Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145:839–849

    Article  CAS  Google Scholar 

  • García E (2003) Distribución de la precipitación en la República Mexicana. Invest Geogr Bol 50:67–76

    Google Scholar 

  • González Dávila O (2011) Water arsenic and fluoride contamination in Zacatecas Mexico: An exploratory study. 8th International Conference Developments in Economic Theory and Policy. The University of the Basque Country, Spain. Available at: http://www.conferencedevelopments.com/files/Gonzalez_Davila.pdf. Accessed 8 May 2013

  • Grünberger O (2005) El concepto de playa. In: Grünberger A, Reyes-Gómez VM, Janeau JL (eds) Las playas del Desierto Chihuahuense (parte mexicana), Instituto de Ecología A.C.-IRD, Xalapa

  • Gutiérrez M, Johnson E (2010) Temporal variations of natural soil salinity in an arid environment using satellite images. J South Am Earth Sci 30:46–57

    Article  Google Scholar 

  • Gutiérrez M, Alarcón-Herrera MT, Camacho LM (2009) Geographical distribution of arsenic in sediments within the Rio Conchos Basin, Mexico. Environ Geol 57:929–935

    Article  Google Scholar 

  • Gutiérrez M, Reyes-Gómez VM, Alarcón Herrera MT, Núñez López D (2012) Exploratory analysis of sediment geochemistry to determine the source and dispersion of Ba, Fe, Mn, Pb and Cu in Chihuahua. Northern Mexico. J Geogr Geol 4(4):26–39

    Google Scholar 

  • Instituto Nacional de Estadística, Geografía e Informática (1984) Carta edafologica: Mexico, Ojinaga H13–8, scale 1:250,000. INEGI, Mexico

  • Instituto Nacional de Estadística, Geografía e Informática (1999) Estudio hidrologico del estado de Chihuahua. Aguascalientes AGS, Mexico. INEGI, México

  • Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL et al (2001) Water in a changing world. Ecol Appl 11(4):1027–1045

    Article  Google Scholar 

  • Janeau JL, Grünberger O, Páez-Pérez N, Reyes-Gómez VM (2005) Las playas y sebkras del desierto Chihuahuense. In: Grünberger A, Reyes-Gómez VM, Janeau JL (eds) Las playas del Desierto Chihuahuense (parte mexicana). Instituto de Ecología A.C.–IRD, Xalapa

    Google Scholar 

  • Kafri U, Yechieli Y (eds) (2010) Characteristics of current continental endorheic base-levels. In: Groundwater base level changes and adjoining hydrological systems. Springer, pp 69–72

  • Karro E, Uppin M (2013) The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia. Environ Monit Assess 185:3735–3748

    Article  CAS  Google Scholar 

  • Kim SH, Kim K, Ko KS, Kim Y, Lee KS (2012) Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 87:851–856

    Article  CAS  Google Scholar 

  • Luo ZD, Zhang YM, Ma L, Zhang GY, He X, Wilson R (1997) Chronic arsenicism and cancer in Inner Mongolia—Consequences of well-water arsenic levels greater than 50 µg/l. In: Abernathy CO, Calderon RL, Chappel WR (eds) Arsenic: exposure and health effects. Chapman and Hall, Springer Science + Bussines Media, Dordechet, Typesseter Ltd., Hong Kong, pp 5–69

  • Mahlknecht J, Horst A, Hernández G, Araventa R (2008) Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (northern Mexico) and implications for water resources management. Hydrol Process 22:4736–4751

    Article  CAS  Google Scholar 

  • Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68:21–32

    Article  Google Scholar 

  • McKee T, Doesken N, Kleist J (1995) Drought monitoring with multiple time scales. American Meteorological Society, 9th Conference on Applied Climatology, 1, pp 233–236

  • Miyamoto S, Fenn LB, Swietlik D (1995) Flow, salts, and trace elements in the Rio Grande: a review. Agricultural Experimental Station, College Station

    Google Scholar 

  • NOM-127-SSAI-1994. Norma Oficial Mexicana. Salud ambiental (1994) Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Diario de la Federación, México

  • Núñez-López D, Muñoz CA, Gadsden H, Reyes-Gómez VM (2007) Characterization of drought at different time scales in Chihuahua, Mexico. Agrociencia 41:253–262

    Google Scholar 

  • Ochoa-Reyes J, Vidal Lozano A, Lerma Santana A, Gómez Reza L, Reta Sánchez A, Fernández Escajeda D (2009) Arsenicismo subagudo y crónico en una población rural. Dermatol Rev Mex 53(2):63–69

    Google Scholar 

  • Ortega-Guerrero MA (2009) Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México. Rev Mex Cienc Geol 26(1):143–161

    Google Scholar 

  • Pascual-Ferrer J, Perez-Foguet A, Codony J, Raventos E, Candela L (2014) Assessment of water resources management in the Ethiopian Central Rift Valley: environmental conservation and poverty reduction. Int J Water Resour Dev 30:572–587

  • Piñón-Miramontes M, Bautista-Margulis RG, Pérez-Hernández A (2003) Removal of arsenic and fluoride from drinking water with cake alum and a polymeric anionic flocculent. Fluoride 36(2):122–128

    Google Scholar 

  • Planer-Friedrich B, Armienta MA, Merkel BJ (2001) Origin of arsenic in the groundwater of the Rio Verde basin Mexico. Environ Geol 40:1290–1298

    Article  CAS  Google Scholar 

  • Razo I, Carrizales L, Castro J, Díaz-Barriga F (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152(1–4):129–152

    Article  CAS  Google Scholar 

  • Reyes-Gómez VM, Alarcón-Herrera MT, Gutiérrez M, Núñez-Lópe D (2013) Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: contaminant levels, potential sources, and co-occurrence. Water Air Soil Pollut 224:1433

    Article  Google Scholar 

  • Robinson GR Jr, Ayotte JD (2006) The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA. App Geochem 21:1482–1497

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez M, Green AJ, López R, Martos-Rosillo S (2012) Changes in water level, land use, and hydrological budget in a semi-permanent playa lake, Southwest Spain. Environ Monit Assess 184:797–810

    Article  Google Scholar 

  • Rosen MR (1994) The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas In: MR Rosen (ed) Paleoclimate and basin evolution of playa systems. Geological Society of America Special Paper 289, pp 1–18

  • Ruiz-Payan A, Ortiz M, Duarte-Gardea M (2005) Determination of fluoride in drinking water and in urine of adolescents living in three counties in Northern Chihuahua Mexico using a fluoride ion selective electrode. Microchem J 81:19–22

    Article  CAS  Google Scholar 

  • Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. App Geochem 24:2061–2071

    Article  CAS  Google Scholar 

  • Secretaría de Recursos Hidráulicos (1981) Servicios de prospección y levantamientos geológicos y geofísicos en la cuenca de la Laguna del Cuervo, Estado de Chihuahua. Contrato InGeo SC GZA-81-07-ED, CNA-Chihuahua, Mexico

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Nicolli HB, McDonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  CAS  Google Scholar 

  • Sposito ME, Paolini JD, Amiotti NM, Blanco MC (2011) Natural contaminants in drinking waters (arsenic, boron, fluorine and vanadium) in the Southern Pampean Plain, Argentina. J Environ Prot 2:97–108

    Article  Google Scholar 

  • Strzepek K, Yohe G, Neumann J, Boehlert B (2010) Characterizing changes in drought risk for the United States from climate change. Environ Res Lett 5:1–9

    Article  Google Scholar 

  • Thomas MA, Diehl SF, Pletsch BA, Schumann TL, Pavey RR, Swinford EM (2008) Relation between solid-phase and dissolved arsenic in the ground-water system underlying northern Preble County, Ohio. United States Geological Survey Scientific Investigation Report

  • United States Environmental Protection Agency (2013) Drinking water contaminants. Available at: http://water.epa.gov/drink/contaminants/index.cfm#List. Accessed 1 Sep 2013

  • Wang Y, Shvartsev SL, Su C (2009) Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Appl Geochem 24:641–649

    Article  CAS  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water 38(4):589–604

    Article  CAS  Google Scholar 

  • World Health Organization (2005) Servicios de los Ecosistemas, agua dulce. Chapter 1. In: WHO (ed) Ecosistemas y Bienestar Humano. Ginebra, Suiza, pp 2–6

  • Zeng H, Wu J (2013) Heavy metal pollution of lakes along the mid-lower reaches of the Yangtze River in China: Intensity, sources and spatial patterns. Int J Environ Res Public Health 10:793–807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by Instituto de Ecología A.C., Centro de Investigación y Materiales Avanzados, and Missouri State University. We are indebted to Héctor Díaz and Mario Gómez for their help in collecting the samples and to I.Q. Alejandro Benavides for conducting the chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélida Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Gómez, V.M., Alarcón-Herrera, M.T., Gutiérrez, M. et al. Arsenic and Fluoride Variations in Groundwater of an Endorheic Basin Undergoing Land-Use Changes. Arch Environ Contam Toxicol 68, 292–304 (2015). https://doi.org/10.1007/s00244-014-0082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0082-y

Keywords

Navigation