Skip to main content
Log in

Metabolic and Behavior Changes in Surubim Acutely Exposed to a Glyphosate-Based Herbicide

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study examined the effect of glyphosate-based herbicide (Roundup Original), the major herbicide used in soybean crops in Mato Grosso state, at concentrations of 0, 2.25, 4.5, 7.5, and 15 mg L−1 on metabolic and behavior parameters of the hybrid fish surubim in an acute exposure lasting 96 h. Glycogen content, glucose, lactate, and protein levels were measured in different tissues. Plasma levels of cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were also determined. Ventilatory frequency (VF) and swimming activity (SA) were considered behavior parameters. Results showed that herbicide exposure decreased plasma glucose levels and increased it in surubim liver. Lactate increased in both plasma and liver but decreased in muscle. Protein levels decreased in plasma and muscle but increased in liver. After herbicide exposure, liver and muscle glycogen was decreased. Cholesterol levels decreased in plasma at all concentrations tested. Plasma ALT increased, and no alterations were recorded for AST levels. VF increased after glyphosate exposure (5 min) and decreased after 96 h. SA showed differences among all groups (5 min). At the end of 96 h, SA was altered by the 7.5 mg L−1 concentration. Fish used anaerobic glycolysis as indicated by generally decreased glycogen levels and decreased lactate levels in muscle but increased ones in plasma and liver. We suggest that the studied parameters could be used as indicators of herbicide toxicity in surubim and may provide extremely important information for understanding the biology of the animal and its responsiveness to external stimuli (stressors).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrantes N, Pereira R, Gonçalves F (2010) Occurrence of pesticides in water, sediments, and fish tissues in lake surrounded by agricultural lands: concerning risks to humans and ecological receptors. Water Air Soil Pollut 212:77–88

    Article  CAS  Google Scholar 

  • Agropecuário do Mato Grosso. http://www.ecodebate.com.br/contaminacao-deaguas-superficiais-e-dechuva-por-agrotoxicos-em-uma-regiao-do-estado-do-mato-grosso/. Accessed 24 July 2012

  • Aguiar LH, Moraes G, Avilez IM, Altran AE, Correa CF (2004) Metabolical effects of folidol 600 on the neotropical freshwater fish matrinxa, Brycon cephalus. Environ Res 95:224–230

    Article  Google Scholar 

  • Alegria HA, Shaw TJ (1999) Rain deposition of pesticides in coastal waters of the South Atlantic Bight. Environ Sci Technol 33:850–856

    Article  CAS  Google Scholar 

  • Barreto RE, Volpato GL (2004) Caution for using ventilatory frequency as an indicator of stress in fish. Behav Proc 66:43–51

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Compar Biol 42:517–525

    Article  CAS  Google Scholar 

  • Bidinotto PM, Souza RHS, Moraes G (1997) Hepatic glycogen in eight tropical freshwater teleost fish: a procedure for field determinations of microsamples. Bol Tech CEPTA 10:53–60

    Google Scholar 

  • Brausch JM, Smith PN (2007) Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp. Thamnocephalus platyurus. Arch Environ Contam Toxicol 52(2):217–221

    Article  CAS  Google Scholar 

  • Cattaneo R, Clasen B, Loro VL, Menezes CC, Pretto A, Baldisserotto B et al (2011) Toxicological responses of cyprinus carpio exposed to a commercial formulation containing glyphosate. Bull Environ Contam Toxicol 87:597–602

    Article  CAS  Google Scholar 

  • Corbera M, Hidalgo M, Salvado V, Wieczorek PP (2005) Determination of glyphosate and aminomethilphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Anal Chim Acta 540:3–7

    Article  CAS  Google Scholar 

  • Duboie M, Gilles KA, Hamilton JK, Roberts PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–358

    Article  Google Scholar 

  • Elia AC, Galarini R, Dorr AJM, Taticchi MI (2006) Bioaccumulation of heavy metals, organochlorine pesticides, and detoxification biochemical indexes in tissues of Ictalurus melas of lake Trasimeno. Bull Environ Contam Toxicol 76:132–139

    Article  CAS  Google Scholar 

  • Ferreira D, Motta AC, Kreutz LC, Toni C, Loro VL, Barcellos LJG (2010) Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere 79:914–921

    Article  CAS  Google Scholar 

  • Fonseca MB, Glusczak L, Moraes BS, Menezes CC, Pretto A, Tierno MA et al (2008) The 2,4-d herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens). Ecotoxicol Environ Saf 69:416–420

    Article  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Glusczak L, Miron DS, Crestani M, Fonseca MB, Pedron FA, Duarte MF et al (2006) Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65:237–241

    Article  CAS  Google Scholar 

  • Glusczak L, Miron DS, Moraes BS, Simões RR, Schetinger MR, Morsch VM et al (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol C 146:519–524

    Google Scholar 

  • Glusczak L, Loro VL, Pretto A, Moraes BS, Raabe A, Duarte MF et al (2011) Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 61:624–630

    Article  CAS  Google Scholar 

  • Harrower JR, Brown CH (1972) Blood lactic acid. A micromethod adapted to field collection of microliter samples. J Appl Physiol 32:709–711

    CAS  Google Scholar 

  • Hidalgo C, Rios C, Hidalgo M, Salvadó V, Sancho JV, Hernández F (2004) Improved coupled-column liquid chromatographic method for the determination of glyphosate and aminomethylphosphonic acid residues in environmental waters. J Chromatagr A 1035:153–157

    Article  CAS  Google Scholar 

  • Instituto de Desenvolvimento Agropecuário do Mato Grosso (INDEA), Planilha de Dados do Sistema de Informação de Agrotóxicos (CD), 2008 a 2009. Instituto de Desenvolvimento, Cuiabá, Mato Grosso, Brazil. http://www.ecodebate.com.br/contaminacao-de-aguas-superficiais-e-de-chuva-por-agrotoxicos-em-uma-regiao-do-estado-do-mato-grosso/. Accessed 24 July 2012

  • Jiraungkoorskul W, Upatham ES, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P (2002) Histopathological effects of Roundup, a glyphosate herbicide, on Nile tilápia (Oreochromis niloticus). Sci Asia 28:121–127

    Article  CAS  Google Scholar 

  • Jyothi B, Narayan G (1999) Certain pesticide-induced carbohydrate metabolic disorders in the serum of freshwater fish Clarias batrachius. Food Chem Toxicol 37:417–421

    Article  CAS  Google Scholar 

  • Langiano VC, Martinez CB (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C 147:222–231

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937

    Article  CAS  Google Scholar 

  • Menezes CC, Loro VL, Fonseca MB, Cattaneo R, Pretto A, Miron DS et al (2011) Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic Biochem Physiol 100:145–150

    Article  Google Scholar 

  • Miron D, Crestani M, Schetinger MR, Morsch VM, Baldisserotto B, Tierno MA et al (2005) Effects of herbicide clomazone, quinclorac and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptateridae). Ecotoxicol Environ Saf 61:398–403

    Article  CAS  Google Scholar 

  • Modesto KA, Martinez CBR (2010) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299

    Article  CAS  Google Scholar 

  • Moraes BS, Clasen B, Loro VL, Pretto A, Toni C, de Avila LA et al (2011) Toxicological responses of cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicol Environ Saf 74:328–335

    Article  CAS  Google Scholar 

  • Oruç EO, Uner N (1998) Effects of azinphosmethyl on some biochemical parameters in blood, muscle, and liver tissues of Cyprinus carpio (L.). Pestic Biochem Physiol 62:65–71

    Article  Google Scholar 

  • Pretto A, Loro VL, Menezes C, Moraes BS, Reimche GB, Zanella R et al (2011) Commercial formulation containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotoxicol Environ Saf 74:336–341

    Article  CAS  Google Scholar 

  • Rendon-von Osten J, Ortiz-Arana A, Guilhermino L, Soares AM (2005) In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere 58:627–636

    Article  CAS  Google Scholar 

  • Sarikaya R, Yilmaz M (2003) Investigation of acute toxicity and the effect of (2,4-dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Chemosphere 52:195–201

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K (1996) Fisiologia animal, adaptação e meio ambient, 5th edn. Santos, São Paulo

    Google Scholar 

  • Shiogiri NS, Paulino MG, Carraschi SP, Baraldi FG, da Cruz C, Fernandes MN (2012) Acute exposure of a glyphosate-based herbicide affects the gills and liver of the neotropical fish, Piaractus mesopotamicus. Environ Toxicol Pharmacol 34(2): 388–396

  • Suarez RK, Mommesen TP (1987) Gluconeogenesis in teleost fishes. Can J Zool 65:1869–1882

    Article  CAS  Google Scholar 

  • Volpato GL, Frioli PMA, Carrieri MP (1989) Heterogeneous growth in fishes: some new data in the Nile tilapia, Oreochromis niloticus and a general view about the casual mechanism. Biol Fisiol Anim 13:7–22

    Google Scholar 

  • Wendelaar-Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    Article  CAS  Google Scholar 

  • Zanella R, Primel EG, Machado SLO, Gonçalves FF, Marchezan E (2002) Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromatographia 55:573–577

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by Fundação de Amparo a Pesquisa do Estado de Mato Grosso (FAPEMAT/304283-2010). The authors thank the fish farm Nativ (Sorriso, MT, Brazil). All academics have scientific initiation fellowships (J. M. dos S. Teixeira [FAPEMAT]; K. M. L. Miléski, P. C. Hansen, and P. R. Moeller [PIBIC-UFMT]). The authors are grateful to colleagues who contributed with valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria D. G. Sinhorin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinhorin, V.D.G., Sinhorin, A.P., Teixeira, J.M.S. et al. Metabolic and Behavior Changes in Surubim Acutely Exposed to a Glyphosate-Based Herbicide. Arch Environ Contam Toxicol 67, 659–667 (2014). https://doi.org/10.1007/s00244-014-0073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0073-z

Keywords

Navigation