Metabolic and Behavior Changes in Surubim Acutely Exposed to a Glyphosate-Based Herbicide

  • Valéria D. G. Sinhorin
  • Adilson P. Sinhorin
  • Jhonnes Marcos S. Teixeira
  • Kelly Márcia L. Miléski
  • Paula Carine Hansen
  • Paulo Rafael Moeller
  • Paula Sueli A. Moreira
  • Amanda M. Baviera
  • Vânia L. Loro
Article

Abstract

This study examined the effect of glyphosate-based herbicide (Roundup Original), the major herbicide used in soybean crops in Mato Grosso state, at concentrations of 0, 2.25, 4.5, 7.5, and 15 mg L−1 on metabolic and behavior parameters of the hybrid fish surubim in an acute exposure lasting 96 h. Glycogen content, glucose, lactate, and protein levels were measured in different tissues. Plasma levels of cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were also determined. Ventilatory frequency (VF) and swimming activity (SA) were considered behavior parameters. Results showed that herbicide exposure decreased plasma glucose levels and increased it in surubim liver. Lactate increased in both plasma and liver but decreased in muscle. Protein levels decreased in plasma and muscle but increased in liver. After herbicide exposure, liver and muscle glycogen was decreased. Cholesterol levels decreased in plasma at all concentrations tested. Plasma ALT increased, and no alterations were recorded for AST levels. VF increased after glyphosate exposure (5 min) and decreased after 96 h. SA showed differences among all groups (5 min). At the end of 96 h, SA was altered by the 7.5 mg L−1 concentration. Fish used anaerobic glycolysis as indicated by generally decreased glycogen levels and decreased lactate levels in muscle but increased ones in plasma and liver. We suggest that the studied parameters could be used as indicators of herbicide toxicity in surubim and may provide extremely important information for understanding the biology of the animal and its responsiveness to external stimuli (stressors).

References

  1. Abrantes N, Pereira R, Gonçalves F (2010) Occurrence of pesticides in water, sediments, and fish tissues in lake surrounded by agricultural lands: concerning risks to humans and ecological receptors. Water Air Soil Pollut 212:77–88CrossRefGoogle Scholar
  2. Aguiar LH, Moraes G, Avilez IM, Altran AE, Correa CF (2004) Metabolical effects of folidol 600 on the neotropical freshwater fish matrinxa, Brycon cephalus. Environ Res 95:224–230CrossRefGoogle Scholar
  3. Alegria HA, Shaw TJ (1999) Rain deposition of pesticides in coastal waters of the South Atlantic Bight. Environ Sci Technol 33:850–856CrossRefGoogle Scholar
  4. Barreto RE, Volpato GL (2004) Caution for using ventilatory frequency as an indicator of stress in fish. Behav Proc 66:43–51CrossRefGoogle Scholar
  5. Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Compar Biol 42:517–525CrossRefGoogle Scholar
  6. Bidinotto PM, Souza RHS, Moraes G (1997) Hepatic glycogen in eight tropical freshwater teleost fish: a procedure for field determinations of microsamples. Bol Tech CEPTA 10:53–60Google Scholar
  7. Brausch JM, Smith PN (2007) Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp. Thamnocephalus platyurus. Arch Environ Contam Toxicol 52(2):217–221CrossRefGoogle Scholar
  8. Cattaneo R, Clasen B, Loro VL, Menezes CC, Pretto A, Baldisserotto B et al (2011) Toxicological responses of cyprinus carpio exposed to a commercial formulation containing glyphosate. Bull Environ Contam Toxicol 87:597–602CrossRefGoogle Scholar
  9. Corbera M, Hidalgo M, Salvado V, Wieczorek PP (2005) Determination of glyphosate and aminomethilphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Anal Chim Acta 540:3–7CrossRefGoogle Scholar
  10. Duboie M, Gilles KA, Hamilton JK, Roberts PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–358CrossRefGoogle Scholar
  11. Elia AC, Galarini R, Dorr AJM, Taticchi MI (2006) Bioaccumulation of heavy metals, organochlorine pesticides, and detoxification biochemical indexes in tissues of Ictalurus melas of lake Trasimeno. Bull Environ Contam Toxicol 76:132–139CrossRefGoogle Scholar
  12. Ferreira D, Motta AC, Kreutz LC, Toni C, Loro VL, Barcellos LJG (2010) Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere 79:914–921CrossRefGoogle Scholar
  13. Fonseca MB, Glusczak L, Moraes BS, Menezes CC, Pretto A, Tierno MA et al (2008) The 2,4-d herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens). Ecotoxicol Environ Saf 69:416–420CrossRefGoogle Scholar
  14. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35–120Google Scholar
  15. Glusczak L, Miron DS, Crestani M, Fonseca MB, Pedron FA, Duarte MF et al (2006) Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65:237–241CrossRefGoogle Scholar
  16. Glusczak L, Miron DS, Moraes BS, Simões RR, Schetinger MR, Morsch VM et al (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol C 146:519–524Google Scholar
  17. Glusczak L, Loro VL, Pretto A, Moraes BS, Raabe A, Duarte MF et al (2011) Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 61:624–630CrossRefGoogle Scholar
  18. Harrower JR, Brown CH (1972) Blood lactic acid. A micromethod adapted to field collection of microliter samples. J Appl Physiol 32:709–711Google Scholar
  19. Hidalgo C, Rios C, Hidalgo M, Salvadó V, Sancho JV, Hernández F (2004) Improved coupled-column liquid chromatographic method for the determination of glyphosate and aminomethylphosphonic acid residues in environmental waters. J Chromatagr A 1035:153–157CrossRefGoogle Scholar
  20. Instituto de Desenvolvimento Agropecuário do Mato Grosso (INDEA), Planilha de Dados do Sistema de Informação de Agrotóxicos (CD), 2008 a 2009. Instituto de Desenvolvimento, Cuiabá, Mato Grosso, Brazil. http://www.ecodebate.com.br/contaminacao-de-aguas-superficiais-e-de-chuva-por-agrotoxicos-em-uma-regiao-do-estado-do-mato-grosso/. Accessed 24 July 2012
  21. Jiraungkoorskul W, Upatham ES, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P (2002) Histopathological effects of Roundup, a glyphosate herbicide, on Nile tilápia (Oreochromis niloticus). Sci Asia 28:121–127CrossRefGoogle Scholar
  22. Jyothi B, Narayan G (1999) Certain pesticide-induced carbohydrate metabolic disorders in the serum of freshwater fish Clarias batrachius. Food Chem Toxicol 37:417–421CrossRefGoogle Scholar
  23. Langiano VC, Martinez CB (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C 147:222–231Google Scholar
  24. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  25. Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937CrossRefGoogle Scholar
  26. Menezes CC, Loro VL, Fonseca MB, Cattaneo R, Pretto A, Miron DS et al (2011) Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic Biochem Physiol 100:145–150CrossRefGoogle Scholar
  27. Miron D, Crestani M, Schetinger MR, Morsch VM, Baldisserotto B, Tierno MA et al (2005) Effects of herbicide clomazone, quinclorac and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptateridae). Ecotoxicol Environ Saf 61:398–403CrossRefGoogle Scholar
  28. Modesto KA, Martinez CBR (2010) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299CrossRefGoogle Scholar
  29. Moraes BS, Clasen B, Loro VL, Pretto A, Toni C, de Avila LA et al (2011) Toxicological responses of cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicol Environ Saf 74:328–335CrossRefGoogle Scholar
  30. Oruç EO, Uner N (1998) Effects of azinphosmethyl on some biochemical parameters in blood, muscle, and liver tissues of Cyprinus carpio (L.). Pestic Biochem Physiol 62:65–71CrossRefGoogle Scholar
  31. Pretto A, Loro VL, Menezes C, Moraes BS, Reimche GB, Zanella R et al (2011) Commercial formulation containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotoxicol Environ Saf 74:336–341CrossRefGoogle Scholar
  32. Rendon-von Osten J, Ortiz-Arana A, Guilhermino L, Soares AM (2005) In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere 58:627–636CrossRefGoogle Scholar
  33. Sarikaya R, Yilmaz M (2003) Investigation of acute toxicity and the effect of (2,4-dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Chemosphere 52:195–201CrossRefGoogle Scholar
  34. Schmidt-Nielsen K (1996) Fisiologia animal, adaptação e meio ambient, 5th edn. Santos, São PauloGoogle Scholar
  35. Shiogiri NS, Paulino MG, Carraschi SP, Baraldi FG, da Cruz C, Fernandes MN (2012) Acute exposure of a glyphosate-based herbicide affects the gills and liver of the neotropical fish, Piaractus mesopotamicus. Environ Toxicol Pharmacol 34(2): 388–396Google Scholar
  36. Suarez RK, Mommesen TP (1987) Gluconeogenesis in teleost fishes. Can J Zool 65:1869–1882CrossRefGoogle Scholar
  37. Volpato GL, Frioli PMA, Carrieri MP (1989) Heterogeneous growth in fishes: some new data in the Nile tilapia, Oreochromis niloticus and a general view about the casual mechanism. Biol Fisiol Anim 13:7–22Google Scholar
  38. Wendelaar-Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625Google Scholar
  39. Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165CrossRefGoogle Scholar
  40. Zanella R, Primel EG, Machado SLO, Gonçalves FF, Marchezan E (2002) Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromatographia 55:573–577CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Valéria D. G. Sinhorin
    • 1
  • Adilson P. Sinhorin
    • 1
  • Jhonnes Marcos S. Teixeira
    • 2
  • Kelly Márcia L. Miléski
    • 2
  • Paula Carine Hansen
    • 2
  • Paulo Rafael Moeller
    • 3
  • Paula Sueli A. Moreira
    • 3
  • Amanda M. Baviera
    • 4
  • Vânia L. Loro
    • 5
  1. 1.Instituto de Ciências Naturais, Humanas e Sociais Laboratórios Integrados de Pesquisa em Ciências QuímicasUniversidade Federal de Mato Grosso, Campus Universitário de SinopSinopBrazil
  2. 2.Instituto de Ciências da SaúdeUniversidade Federal de Mato Grosso, Campus Universitário de SinopSinopBrazil
  3. 3.Instituto de Ciências Agrárias e AmbientaisUniversidade Federal de Mato Grosso, Campus Universitário de SinopSinopBrazil
  4. 4.Departamento de Analises Clínicas, Faculdade de Ciências FarmacêuticasUniversidade Estadual PaulistaAraraquaraBrazil
  5. 5.Laboratório de Bioquímica Toxicológica e Adaptativa de PeixesUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations