Skip to main content
Log in

Ecotoxicological Evaluation of Sewage Sludge Contaminated with Zinc Oxide Nanoparticles

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The objective of this work was to evaluate the ecotoxicological qualitative risk associated with the use of sewage sludge containing Zn oxide nanoparticles (ZnO-NPs) as soil amendment. A sludge-untreated soil and two sludge-treated soils were spiked with ZnO-NPs (0–1,000 mg/kg soil). Soil ecotoxicity was assessed with Eisenia fetida (acute and sublethal end points), and the unfilterable and filterable (0.02 μm) soil leachates were tested with a battery of biomarkers using Chlorella vulgaris, Daphnia magna, and the fish cell line RTG-2 (Oncorhynchus mykiss). The production of E. fetida cocoons in sludge-treated soils was lower than that in sludge-untreated soils. The highest effect in the algal growth inhibition test was detected in sludge-untreated soil, most likely caused by the loss of organic matter in these samples. The D. magna results were always negative. Toxic effects (lysosomal cell function and production of reactive oxygen species) in RTG-2 cells were only observed in sludge-treated soils. In general, the toxicity of ZnO-NPs in sludge-treated soils was similar to that of sludge-untreated soil, and the filterable leachate fraction [Zn salt (Zn2+)] did not produce greater effects than the unfilterable fraction (ZnO-NPs). Thus, after the addition of ZnO-NP—enriched sewage sludge to agricultural soil, the risk of toxic effects for soil and aquatic organisms was shown to be low. These findings are important because repeated use of organic amendments such as sewage sludge may cause more and more increased concentrations of ZnO-NPs in soils over the long-term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranda A, Sequedo L, Tolosa L, Quintas G, Burello E et al (2013) Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro 27:954–963

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets KKA (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver release into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J et al (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantization of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cañas J, Qi B, Li S, Maul JD, Cox SB et al (2011) Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). J Environ Monit 13:3351–3357

    Article  Google Scholar 

  • Castano A, Bols N, Braunbeck T, Dierickx P, Halder M et al (2003) The use of fish cells in ecotoxicology. Altern Lab Anim 31:317–351

    CAS  Google Scholar 

  • Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45:1995–2001

    Article  CAS  Google Scholar 

  • Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46:12178–12185

    Article  CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods of oxygen radicals research. CRC Press, Boca Raton, pp 283–284

  • Clifford M, McGeer JC (2009) Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters. Aquat Toxicol 91:26–32

    Article  CAS  Google Scholar 

  • Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437

    Article  CAS  Google Scholar 

  • de Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54

    Article  Google Scholar 

  • DIN 38414-S4 (1984) German standard determination of the leachability by water (S4). Deutsche Norm, Teil 4 Okt:646–675

  • Domene X, Chelinho S, Campana P, Natal-da-Luz T, Alcañiz JM et al (2011) Influence of soil properties on the performance of Folsomia candida: implications for its use in soil ecotoxicology testing. Environ Toxicol Chem 30:1497–1505

    Article  CAS  Google Scholar 

  • Evens R, De Schamphelaere KAC, De Samber B, Silversmit G, Schoonjans T et al (2011) Waterborne versus dietary zinc accumulation and toxicity in Daphnia magna: a synchrotron radiation based X-ray fluorescence imaging approach. Environ Sci Technol 46:1178–1184

    Article  Google Scholar 

  • Fernández MD, García-Gómez C, Babin M (2013) In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Sci Total Environ 452–453:262–274

    Article  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y et al (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328

    Article  CAS  Google Scholar 

  • Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles As affected by pH and natural organic matter. Langmuir 24:12385–12391

    Article  CAS  Google Scholar 

  • Gophen M, Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64:408–412

    Article  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase: first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Heggelund LR, Diez-Ortiz M, Lofts S, Lahive E, Jurkschat K et al (2014) Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8:559–572

    Article  CAS  Google Scholar 

  • Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ et al (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37:1111–1117

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Hubal ACE (2009) Biologically relevant exposure science for 21st century toxicity testing. Toxicol Sci 111:226–232

    Article  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  • International Organization for Standardization 6341:1996 (1996) Water quality determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Acute toxicity test (3rd edn.). ISO

  • Jassby D, Farner BJ, Wiesner M (2012) Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ Sci Technol 46:6934–6941

    Article  CAS  Google Scholar 

  • Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530

    Article  CAS  Google Scholar 

  • Jośko I, Oleszczuk P (2013) The influence of ZnO and TiO2 nanoparticles on the toxicity of sewage sludges. Environ Sci Process Impacts 15:296–306

    Article  Google Scholar 

  • Kozlova T (2009) The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat Toxicol 19:221–228

    Article  Google Scholar 

  • Lead JR (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments, chapter 6. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. John Wiley and Sons, Chichester

  • Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075

    Article  CAS  Google Scholar 

  • Lee S, Kim K, Shon HK, Kim SD, Cho J (2011) Biotoxicity of nanoparticles: effect of natural organic matter. J Nanopart Res 13:3051–3061

    Article  CAS  Google Scholar 

  • Li Z, Shuman LM (1996) Heavy metal movement in metal-contaminated soil profiles. Soil Sci 161:656–666

    Article  CAS  Google Scholar 

  • Lopes S, Ribeiro F, Wojnarowicz J, Lojkowski W, Jurkschat K et al (2014) Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ Toxicol Chem 33:190–198

    Article  CAS  Google Scholar 

  • Lovestam G, Rauscher H, Roebben GBS, Gibson N, Putaud JP, Stamm H (2010) Considerations on a definition of nanomaterial for regulatory purposes. JRC Reference Reports, EUR 24403 EN, p 8

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Article  Google Scholar 

  • Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K et al (2012) Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46:7215–7221

    Article  CAS  Google Scholar 

  • Ma HW, Phillip L, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • Maret W (2012) New perspectives of zinc coordination environments in proteins. J Inorg Biochem 111:110–116

    Article  CAS  Google Scholar 

  • Matejczyk M, Płaza GA, Nałęcz-Jawecki G, Ulfig K, Markowska-Szczupak A (2011) Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82:1017–1023

    Article  CAS  Google Scholar 

  • Natal-da-luz T, Tidona S, Van Gestel CAM, Morais PV, Sousa JP (2009) The use of collembola avoidance tests to characterize sewage sludges as soil amendments. Chemosphere 77:1526–1533

    Article  CAS  Google Scholar 

  • Olchawa E, Bzowska M, Stürzenbaum S, Morgan AJ, Plytycz B (2006) Heavy metals affect the coelomocyte-bacteria balance in earthworms: environmental interactions between abiotic and biotic stressors. Environ Pollut 142:373–381

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (1984) Guidelines for testing of chemicals. No 207. Earthworm acute toxicity test. OECD, Paris

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2004) Guidelines for the testing of chemicals. No. 222. Earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD, Paris

    Google Scholar 

  • Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166

    Article  CAS  Google Scholar 

  • Phenrat T, Long T, Lowry G, Veronesi B (2009) Partial oxidation (‘‘aging’’) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200

    Article  CAS  Google Scholar 

  • Poynton H, Lazorchak JM, Impelliteri C, Smoth M, Rogers K et al (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768

    Article  CAS  Google Scholar 

  • Ramos C, de la Torre AI, Tarazona JV, Muñoz MJ (1996) Desarrollo de un ensayo de inhibición de Chlorella vulgaris utilizando un test en microplacas [in Spanish]. Rev Toxicol 13:97–100

    CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard decrease of manufactured nanoparticles. J Clean Prod 14:124–133

    Article  Google Scholar 

  • Reinhart DR, Swadeshmukul S, Bolyard SC (2012) Fate of engineered nanoparticles in municipal solid waste landfills. Environmental Research and Education Foundation, Final report

  • Santore RC, Mathew R, Paquin PR, Di Toro D (2002) Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 133:271–285

    Article  Google Scholar 

  • Schirmer K, Chan AGJ, Greenerg BM, Dixon DG, Bols NC (1997) Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol In Vitro 11:107–119

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl Soil Ecol 11:227–243

    Article  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbuhler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  • Tao S, Lin B (2000) Water soluble organic carbon and its measurement in soil and sediment. Water Res 34:1751–1755

    Article  CAS  Google Scholar 

  • Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39:1942–1953

    Article  CAS  Google Scholar 

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    Article  CAS  Google Scholar 

  • Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A (2007) The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C Pharmacol Toxicol 146:281–300

    Article  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescin assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  Google Scholar 

  • Yang K, Lin DH, Xing B (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576

    Article  CAS  Google Scholar 

  • Zheng D, Wang N, Wang X, Tang Y, Zhu L et al (2012) Effects of the interaction of TiO2 nanoparticles with bisphenol A on their physicochemical properties and in vitro toxicity. J Hazard Mater 199–200:426–432

    Article  Google Scholar 

  • Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ana Obrador and José Manuel Alvarez (Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica, Madrid, Spain) for the metal analysis. We thank Francisco J. García (Instalación Científico Tecnológica Singular, Universidad Complutense, Madrid, Spain) for the TEM analysis. We thank Daniel Alonso and Carmen del Rio for technical assistance. This work was supported by Spanish Project No. RTA2010-00018-00-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Babin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gómez, C., Fernández, M.D. & Babin, M. Ecotoxicological Evaluation of Sewage Sludge Contaminated with Zinc Oxide Nanoparticles. Arch Environ Contam Toxicol 67, 494–506 (2014). https://doi.org/10.1007/s00244-014-0070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0070-2

Keywords

Navigation