Skip to main content
Log in

Cadmium Neurotoxicity to a Freshwater Planarian

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonio MT, Benito MJ, Leret ML, Corpas I (1998) Gestational administration of cadmium alters the neurotransmitter levels in newborn rat brains. J Appl Toxicol 18:83–88

    Article  CAS  Google Scholar 

  • Beauvais SL, Jones SB, Parris JT, Brewer SK, Little EE (2001) Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 49:84–90

    Article  CAS  Google Scholar 

  • Best JB, Morita M (1991) Toxicology of planarians. Hydrobiologia 227:375–383

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buttarelli FR, Pontieri FE, Margotta V, Palladini G (2000) Acetylcholine/dopamine interaction in planaria. Comp Biochem Physiol C 125:225–231

    CAS  Google Scholar 

  • Buttarelli FR, Pellicano C, Pontieri FE (2008) Neuropharmacology and behavior in planarians: translations to mammals. Comp Biochem Physiol C 147:399–408

    Google Scholar 

  • Calevro F, Filippi C, Deri P, Albertosi C, Batistoni R (1998) Toxic effects of aluminum, chromium, and cadmium in intact and regenerating freshwater planarians. Chemosphere 37:651–659

    Article  CAS  Google Scholar 

  • Carageorgiou H, Katramadou M (2012) Aspects of cadmium neurotoxicity. In: Li YV, Zhang JH (eds) Metal ion in stroke. Springer Science+Business Media, New York, pp 703–750

    Chapter  Google Scholar 

  • Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by l-cysteine. Basic Clin Pharmacol Toxicol 94:112–118

    Article  CAS  Google Scholar 

  • Carolei A, Margotta V, Palladini G (1975) Proposal of a new model with dopaminergic-cholinergic interactions for neuropharmacological investigations. Neuropsychobiology 1:355–364

    Article  CAS  Google Scholar 

  • Chandra SV, Murthy RC, Husain T, Bansal SK (1984) Effect of interaction of heavy metals on (Na+-K+) ATPase and the uptake of 3H-DA and 3H-NA in rat brain synaptosomes. Acta Pharmacol Toxicol 54:210–213

    Article  CAS  Google Scholar 

  • Cunha I, Mangas-Ramirez E, Guilhermino L (2007) Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods. Comp Biochem Physiol C 145:648–657

    CAS  Google Scholar 

  • Du M, Wang D (2009) The neurotoxic effects of heavy metal exposure on GABAergic nervous system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 27:314–320

    Article  CAS  Google Scholar 

  • Farrell MS, Gilmore K, Raffa RB, Walker EA (2008) Behavioral characterization of serotonergic activation in the flatworm Planaria. Behav Pharmacol 19:177–182

    Article  CAS  Google Scholar 

  • Gabbiani G, Baid D, Déziel C (1967) Toxicity of cadmium for the central nervous system. Exp Neurol 18:154–160

    Article  CAS  Google Scholar 

  • Grebe E, Schaeffer DJ (1991a) Neurobehavioral toxicity of cadmium sulfate to the planarian Dugesia dorotocephala. Bull Environ Contam Toxicol 46:727–730

    Article  CAS  Google Scholar 

  • Grebe E, Schaeffer DJ (1991b) Planarians in toxicology, standardization of a rapid neurobehavioral toxicity test using phenol in a crossover study. Bull Environ Contam Toxicol 46:866–870

    Article  CAS  Google Scholar 

  • Hernandez R (1989) Na+-K+-ATPase activity possibly regulated by a specific serotonin receptor. Brain Res 408:399–402

    Article  Google Scholar 

  • Kapu MM, Shaeffer DJ (1991) Planarians in toxicology. Responses of asexual Dugesia dorotocephala to selected metals. Bull Environ Contam Toxicol 47:302–307

    Article  CAS  Google Scholar 

  • Kinne-Saffran E, Hülseweh M, Pfaff C, Kinne RKH (1993) Inhibition of Na, K-ATPase by cadmium: different mechanisms in different species. Toxicol Appl Pharmacol 121:22–29

    Article  CAS  Google Scholar 

  • Kitamura Y, Kakimura J, Taniguchi T (1998) Protective effect of Talipexole on MPTP-treated planarian, a unique Parkinsonian worm model. Jpn J Pharmacol 78:23–29

    Article  CAS  Google Scholar 

  • Lafuente A, Márquez N, Pazo D, Esquifino AI (2001) Cadmium effects on dopamine turnover and plasma levels of prolactin, GH and ACTH. J Physiol Biochem 57:231–236

    Article  CAS  Google Scholar 

  • Lafuente A, González-Carracedo A, Romero A, Cabaleiro T, Esquifino AI (2005) Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett 155:87–96

    Article  CAS  Google Scholar 

  • Leung TKC, Lim L, Lai JCK (1992) Differential effects of metal ions on type A and type B monoamine oxidase activities in rat brain and liver mitochondria. Metab Brain Dis 7:139–146

    Article  CAS  Google Scholar 

  • Li M-H (2012) Survival, mobility, and membrane-bound enzyme activities of freshwater planarian, Dugesia japonica, exposed to synthetic and natural surfactants. Environ Toxicol Chem 31:843–850

    Article  CAS  Google Scholar 

  • Meyer EM, Cooper JR (1981) Correlations between Na+, K+-ATPase activity and acetylcholine release in rat cortical synaptosomes. J Neurochem 36:467–475

    Article  CAS  Google Scholar 

  • Nishimura K, Yamamoto H, Kitamura Y, Agata K (2008) Brain and neural networks. In: Raffa RB, Rawls SM (eds) Planaria: a model for drug action and abuse. Landes Bioscience, Austin, pp 4–12

    Google Scholar 

  • Northcutt RG (2012) Evolution of centralized nervous systems: two schools of evolutionary thought. Proc Natl Acad Sci USA 109(Suppl 1):10626–10633

    Article  CAS  Google Scholar 

  • Pagán OR, Rowlands AL, Urban KR (2006) Toxicity and behavioral effects of dimethylsulfoxide in planaria. Neurosci Lett 407:274–278

    Article  Google Scholar 

  • Palladini G, Ruggieri S, Stocchi F, De Pandis MF, Venturini G, Margotta V (1996) A pharmacological study of cocaine activity in planaria. Comp Biochem Physiol C 115:41–45

    CAS  Google Scholar 

  • Pari L, Murugavel P (2007) Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPase and oxidative stress in brain of rats. Toxicology 234:44–50

    Article  CAS  Google Scholar 

  • Plusquin M, Stevens A-S, Van Belleghem F, Degheselle O, Van Roten A, Vroonen J et al (2012) Physiological and molecular characterization of cadmium stress in Schmidtea mediterranea. Int J Dev Biol 56:183–191

    Article  CAS  Google Scholar 

  • Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Clasen B et al (2010) Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Arch Environ Contam Toxicol 58:1008–1014

    Article  CAS  Google Scholar 

  • Raffa RB, Rawls SM (2008) Planaria: a model for drug action and abuse. Landes Bioscience, Austin

    Google Scholar 

  • Raffa RB, Holland LJ, Schulingkamp RJ (2001) Quantitative assessment of dopamine D2 antagonist activity using invertebrate (Planaria) locomotion as a functional endpoint. J Pharmacol Toxicol Methods 45:223–226

    Article  CAS  Google Scholar 

  • Raffa RB, Cavallo F, Capasso A (2007) Flumazenil-sensitive dose-related physical dependence in planarians produced by two benzodiazepine and one non-benzodiazepine benzodiazepine receptor agonists. Eur J Pharmacol 564:88–93

    Article  CAS  Google Scholar 

  • Richetti SK, Rosemberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD (2011) Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxicology 32:116–122

    Article  CAS  Google Scholar 

  • Sarnat HB, Netsky MG (2002) When does a ganglion become a brain? Evolutionary origin of the central nervous system. Semin Pediatr Neurol 9:240–253

    Article  Google Scholar 

  • Sastry BSR, Phillis JW (1977) Antagonism of biogenic amine induced depression of cerebral cortical neurons by Na+-K+-ATPase inhibitors. Can J Physiol Pharmacol 55:170–180

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Cherian MG (1985) Effects of heavy metal cations, sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors. Biochem Pharmacol 34:3405–3413

    Article  CAS  Google Scholar 

  • Silva KTU, Pathiratne A (2008) In vitro and in vivo effects of cadmium on cholinesterases in Nile tilapia fingerlings: implications for biomonitoring aquatic pollution. Ecotoxicology 17:725–731

    Article  CAS  Google Scholar 

  • Swann AC (1984) Na+, K+-adenosine triphosphatase regulation by the sympathetic nervous system: effects of noradrenergic stimulation and lesion in vivo. J Pharmacol Exp Ther 228:304–311

    CAS  Google Scholar 

  • Tipton KF, Dawson AP (1968) The distribution of monoamine oxidase and α-glycerophosphate dehydrogenase in pig brain. Biochem J 108:95–99

    CAS  Google Scholar 

  • Venturini G, Stocchi F, Margotta V, Ruggieri S, Bravi D, Bellantuono P et al (1989) A pharmacological study of planaria’s dopaminergic receptors. Neuropharmacology 28:1377–1382

    Article  CAS  Google Scholar 

  • Wright RO, Baccarelli A (2007) Metals and neurotoxicology. J Nutr 137:2809–2813

    CAS  Google Scholar 

  • Wu J-P, Chen H-C, Li M-H (2011) The preferential accumulation of cadmium in the head portion of the freshwater planarian, Dugesia japonica (Platyhelminthes: turbellaria). Metallomics 3:1368–1375

    Article  CAS  Google Scholar 

  • Wu J-P, Chen H-C, Li M-H (2012) Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine. Arch Environ Contam Toxicol 63:220–229

    Article  CAS  Google Scholar 

  • Youdim MBH, Collins GGS, Sandler M (1969) Multiple forms of rat brain monoamine oxidase. Nature 223:626–628

    Article  CAS  Google Scholar 

  • Zhou M, Panchuk-Voloshina N (1997) A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. Anal Biochem 253:169–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding support under Grants No. NSC101-2811-B-002-055 and NSC101-2321-B-002-069 from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JP., Lee, HL. & Li, MH. Cadmium Neurotoxicity to a Freshwater Planarian. Arch Environ Contam Toxicol 67, 639–650 (2014). https://doi.org/10.1007/s00244-014-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0056-0

Keywords

Navigation