Skip to main content
Log in

Assessment of Arsenic-Induced DNA Damage in Goldfish by a Polymerase Chain Reaction-Based Technique Using Random Amplified Polymorphic DNA Markers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Arsenic is a groundwater contaminant of global concern. It is a potent human carcinogen, and its marked genotoxic effects have been reported in several human and animal studies. The present work investigates the applicability of the random amplified polymorphic DNA (RAPD) assay to study the DNA-damaging effects of arsenic at low-level exposure in goldfish Carassius auratus. Four experimental groups of fish, A, B, C and D, were exposed to 0, 10, 50, and 1,000 µg L−1 of arsenic, respectively, in aquaria water for 15 consecutive days. Genomic DNA extraction was followed by RAPD–polymerase chain reaction amplification for each fish separately. One arbitrary decamer primer (PUZ-19) of 33 primers used appeared as the most informative and was capable of exhibiting marked alterations in RAPD profiles between arsenic-exposed and unexposed (control) samples. Different sets of 11 loci were amplified in various experimental groups with four clear polymorphic bands by the primer PUZ-19. The X and XIII amplification loci, which were prominent in the unexposed group, failed to appear in the arsenic-exposed groups. In contrast, the I and XI RAPD bands appeared as new amplification loci in all of the exposed groups. Such alterations in genomic DNA, however, did not exhibit a clear dose-dependent tendency. The RAPD assay, because of its efficacy to unmask alterations in genomic DNA induced by arsenic at low exposure level of 10 µg L−1, appears to be a sensitive and potential tool for detecting arsenic genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (2007) Toxicological profile for arsenic. United States Department of Health and Human Services, Atlanta

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2008) Medical management guidelines for arsenic trioxide (As2O3). CAS#1327-53-3 UN#1561

  • Ahmed MK, Habibullah-Al-Mamun M, Hossain MA, Arif M, Parvin E, Akter MS et al (2011) Assessing the genotoxic potentials of arsenic in Tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere 84:143–149

    Article  CAS  Google Scholar 

  • Akter KF, Owens G, Davey DE, Naidu R (2005) Arsenic speciation and toxicity in biological systems. Rev Environ Contam Toxicol 184:97–149

    CAS  Google Scholar 

  • Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 374:121–135

    Article  Google Scholar 

  • American Public Health Association (1998) Standard methods for the examination of water and waste water, 20th edn. American Water Works Association, American Environmental Federation, Washington

    Google Scholar 

  • Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW et al (2006) Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect 114:1193–1198

    Article  CAS  Google Scholar 

  • Aposhian HV, Aposhian MM (2006) Arsenic toxicology: Five questions. Chem Res Toxicol 19:1–15

    Article  CAS  Google Scholar 

  • Atienzar FA, Jha AN (2004) The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna. Mutat Res 552:125–140

    Article  CAS  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    Article  CAS  Google Scholar 

  • Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH (1999) Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ Toxicol Chem 18:2275–2282

    Article  CAS  Google Scholar 

  • Atienzar FA, Evenden A, Jha A, Savva D, Depledge M (2000) Optimized RAPD analysis generates high-quality genomic DNA profiles at high annealing temperature. Biotechniques 28:52–54

    CAS  Google Scholar 

  • Atienzar FA, Cheung VV, Jha AN, Depledge MH (2001) Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol Sci 59:241–250

    Article  CAS  Google Scholar 

  • Atienzar FA, Venier P, Jha AN, Depledge MH (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res 521:151–163

    Article  CAS  Google Scholar 

  • Bagnyukova TV, Luzhna LI, Pogribny IP, Lushchak VI (2007) Oxidative stress and antioxidant defences in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mutagen 48:658–665

    Article  CAS  Google Scholar 

  • Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488:171–194

    Article  CAS  Google Scholar 

  • Bau DT, Wang TS, Chung CH, Wang AS, Jan KY (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesion induced by arsenite. Environ Health Perspect 110:753–756

    Article  CAS  Google Scholar 

  • Becerril C, Ferrero M, Sanz F, Castaño A (1999) Detection of mitomycin C-induced genetic damage in fish cells by use of RAPD. Mutagenesis 14:449–456

    Article  CAS  Google Scholar 

  • Bhattacharya A, Bhattacharya S (2007) Induction of oxidative stress by arsenic in Clarias batrachus: involvement of peroxisomes. Ecotoxicol Environ Saf 66:178–187

    Article  CAS  Google Scholar 

  • Biswas R, Poddar S, Mukharjee A (2006) Investigations on the genotoxic effects of long term administration of sodium arsenite in bone marrow and testicular cells in vivo using comet assay. J Environ Pathol Toxicol Oncol 26:29–37

    Article  Google Scholar 

  • Cadet J, Bourdat AG, D’Ham C, Duarte V, Gasparutto D, Romieu A et al (2000) Oxidative base damage to DNA: specificity of base excision repair enzyme. Mutat Res 462:121–128

    Article  CAS  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1992) Primer-template interaction during DNA amplification fingerprinting with single arbitrary oligonucleotides. Mol Gen Genet 235:157–165

    Article  CAS  Google Scholar 

  • Cambier S, Gonzalez P, Durrieu G, Bourdineaud J-P (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319

    Article  CAS  Google Scholar 

  • Castaño A, Becerril C (2004) In vitro assessment of DNA damage after short- and long-term exposure to benzo[a]pyrene using RAPD and the RTG-2 fish cell line. Mutat Res 552:141–151

    Article  Google Scholar 

  • Castro MR, Ventura-Lima J, Salom~ao D, Valente R, Dummer NS, Aguiar RB et al (2009) Behavioral and neurotoxic effects of arsenic exposure in zebra fish (Danio rerio, Teleostei, Cyprinidae). Comp Biochem Physiol C 150:337–342

    Google Scholar 

  • Cavas T (2011) In vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem Toxicol 49:1431–1435

    Article  CAS  Google Scholar 

  • Chen CJ, Hsu LI, Wang CH, Shih WL, Hsu YH, Tseng MP et al (2005) Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicol Appl Pharmacol 206:198–206

    Article  CAS  Google Scholar 

  • Clark AG, Lanigan CMS (1993) Prospects for estimating nucleotide divergence with RAPDs. Mol Biol Evol 10:1096–1111

    CAS  Google Scholar 

  • De Vizcaya-Ruiz A, Barbier O, Ruiz-Ramos R, Cebrian ME (2009) Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res 674:85–92

    Article  Google Scholar 

  • Ding W, Liu W, Cooper KL, Qin X, Bergo PL, Hudson LG et al (2009) Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage. J Biol Chem 284:6809–6817

  • Engström J, Hedenstierna G, Larsson A (2010) Pharyngeal oxygen administration increases the time to serious desaturation at intubation in acute lung injury: an experimental study. Crit Care 14:R93

    Article  Google Scholar 

  • Galindo BA, Troilo G, Cólus IMS, Martinez CBR, Sofia SH (2010) Genotoxic effects of aluminum on the Neotropical fish Prochilodus lineatus. Water Air Soil Pollut 212:419–428

    Article  CAS  Google Scholar 

  • Gebel TW (2001) Genotoxicity of arsenical compounds. Int J Hygiene Environ Health 203:249–262

    Article  CAS  Google Scholar 

  • Ghosh P, Basu A, Mahata J, Basu S, Sengupta M, Das JK et al (2006) Cytogenetic damage and genetic variants in the individuals susceptible to arsenic induced cancer through drinking water. Int J Cancer 118:2470–2478

    Article  CAS  Google Scholar 

  • Gomez SE, del Razo LM, Muñoz-Sánchez JL (2005) Induction of DNA damage by free radicals generated either by organic or inorganic arsenic (AsIII, MMAIII and DMAIII) in cultures of B and T lymphocytes. Biol Trace Element Res 108:115–126

    Article  CAS  Google Scholar 

  • Hagger JA, Atienzer FA, Jha AN (2005) Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis. Aquat Toxicol 74:205–217

    Article  CAS  Google Scholar 

  • Huang CS, Ke QD, Costa M, Shi XL (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255:57–66

    Article  CAS  Google Scholar 

  • Hughes MF (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2004) Monograph on the evaluation of the carcinogenic risk to humans. Some drinking water disinfectants and contaminants, including arsenic, vol 84. IARC, Lyon

    Google Scholar 

  • Jha AN (2004) Genotoxicological studies in aquatic organism: an overview. Mutat Res 552:1–17

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Kesari VP, Kumar A, Khan PK (2012) Genotoxic potential of arsenic at its reference dose. Ecotoxicol Environ Saf 80:126–131

    Article  CAS  Google Scholar 

  • Khan PK, Kesari VP, Kumar A (2013) Mouse micronucleus assay as a surrogate to assess genotoxic potential of arsenic at its human reference dose. Chemosphere 90:993–997

    Article  CAS  Google Scholar 

  • Kitchin KT, Conolly R (2010) Arsenic-induced carcinogenesis—Oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23:327–335

    Article  CAS  Google Scholar 

  • Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobna Z, Styblo M et al (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101:1670–1681

    Article  CAS  Google Scholar 

  • Kumar A, Tyagi MB, Jha PN (2004) Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem Biophys Res Commun 318:1025–1030

    Article  CAS  Google Scholar 

  • Kumar A, Kesari VP, Khan PK (2013) Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. Biometals 26:337–346

    Article  CAS  Google Scholar 

  • Lakra WS, Nagpure NS (2009) Genotoxicological studies in fishes. A review. Indian J Anim Sci 79:93–98

    CAS  Google Scholar 

  • Lee Y-C, Yang VC, Wang T-S (2007) Use of RAPD to detect sodium arsenite-induced DNA damage in human lymphoblastoid cells. Toxicology 239:108–115

    Article  CAS  Google Scholar 

  • Liu F, Jan KY (2000) DNA damage in arsenite and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 28:55–63

    Article  Google Scholar 

  • Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH et al (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  CAS  Google Scholar 

  • Liu W, Yanf YS, Li PJ, Zhou QX, Xie LJ, Han YP (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazarad Mater 161:878–883

    Article  CAS  Google Scholar 

  • Lourenco J, Castro BB, Machado R, Nunes B, Mendo S, Goncalves F et al (2010) Genetic, biochemical, and individual responses of the teleost fish Carassius auratus to uranium. Arch Environ Contam Toxicol 58:1023–1031

    Article  CAS  Google Scholar 

  • Lubin JH, Beane Freeman LE, Cantor KP (2007) Inorganic arsenic in drinking water: an evolving public health concern. J Natl Cancer Inst 99:906–907

    Article  CAS  Google Scholar 

  • Luceri C, De Filippo C, Caderni G, Gambacciani L, Salvadori M, Giannini A et al (2000) Detection of somatic DNA alterations in azoxymethane-induced F344 rat colon tumors by random amplified polymorphic DNA analysis. Carcinogenesis 21:1753–1756

    Article  CAS  Google Scholar 

  • Lynch M (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7:478–484

    CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  Google Scholar 

  • Maiti S, Chatterjee AK (2001) Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch Toxicol 75:531–537

    Article  CAS  Google Scholar 

  • Marnett L (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  Google Scholar 

  • Mohanty G, Mohanty J, Garnayak SK, Dutta SK (2009) PCR based detection of furadan genotoxicity effects in rohu (Labio rohita) fingerlings. Vet Res Commun 33:771–780

    Article  CAS  Google Scholar 

  • Mouron SA, Grillo CA, Dulout FN, Golijow CD (2006) Induction of DNA strand breaks, DNA-protein cross-links and sister-chromatid exchanges by arsenite in a human lung cell line. Toxicol In Vitro 20:279–285

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 74:5267–5273

    Google Scholar 

  • Noel S, Rath SK (2006) Randomly amplified polymorphic DNA as a tool for genotoxicity: an assessment. Toxicol Ind Health 22:267–275

    Article  CAS  Google Scholar 

  • NRC (2001) Arsenic in drinking water: update. NRC, National Academy Press, Washington

    Google Scholar 

  • Orieux N, Cambier S, Gonzalez P, Morin B, Adam C, Garnier-Laplace J et al (2011) Genotoxic damage in zebrafish submitted to a polymetallic gradient displayed by the lot River (France). Ecotoxicol Environ Saf 74:974–983

    Article  CAS  Google Scholar 

  • Palus J, Lewinska D, Dziubaltowaska E, Stepnik M, Beck J, Rydzynski K et al (2005) DNA damage in leukocytes of workers occupationally exposed to arsenic in copper smelters. Environ Mol Mutagen 46:81–87

    Article  CAS  Google Scholar 

  • Rocco L, Frenzilli G, Zito G, Archimandritis A, Peluso C, Stingo V (2012) Genotoxic effects in fish induced by pharmacological agents present in the sewage of some Italian water-treatment plants. Inc Environ Toxicol 27:18–25

    Article  CAS  Google Scholar 

  • Rocco L, Valentino IV, Scapigliati G, Stingo V (2014) RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytototechnology 66:383–393

    Article  CAS  Google Scholar 

  • Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, Vizcaya-Ruiz AD, Cebrian ME (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674:109–115

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Samuel S, Kathirve R, Jayavelu RT, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of DL-alpha-lipoic acid. Toxicol Lett 155:27–34

    Article  CAS  Google Scholar 

  • Sikorsky JA, Primerano DA, Fenger TW, Denvir J (2004) Effect of DNA damage on PCR amplification efficiency with the relative threshold cycle method. Biochem Biophys Res Commun 323:823–830

    Article  CAS  Google Scholar 

  • Sobsey MD, Bartram S (2003) Water quality and health in the new millennium: the role of World Health Organization Guidelines for drinking water quality. Forum Nutr 56:396–405

    Google Scholar 

  • Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. Freeman, San Francisco, p 359

    Google Scholar 

  • Sykora P, Snow ET (2008) Modulation of DNA polymerase beta dependent base excision repair in cultured human cells after low dose exposure to arsenite. Toxicol Appl Pharmacol 228:385–394

    Article  CAS  Google Scholar 

  • United Nations World Water Assessment Programme (2009) Water in a changing world. The 3rd United Nations World Water Development Report (WWDR 3), 5th World Water Forum, Istanbul, Turkey

  • United States Environmental Protection Agency (2001) Arsenic, Integrated Risk Information System (IRIS, the USEPA online chemical toxicity information service)

  • Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM (2009a) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157:3479–3484

    Article  CAS  Google Scholar 

  • Ventura-Lima J, Castro MR, Acosta D, Fattorini D, Regoli F, Carvalho LM et al (2009b) Effects of arsenic (As) exposure on the antioxidant status of gills of the zebra fish Danio rerio (Cypridinae). Comp Biochem Physiol 149:538–543

    Google Scholar 

  • Walker M, Fosbury D (2009) Arsenic, As(III), and tungsten in Nevada County’s private water supplies. J Water Health 7:293–301

    Article  CAS  Google Scholar 

  • Wang TS, Hsu TY, Chung CH, Wang AS, Bau DT, Jan KY (2001) Arsenic induced oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radic Biol Med 31:321–330

    Article  CAS  Google Scholar 

  • Wang TS, Chung CH, Wang AS, Bau DT, Samikkannu T, Jan KY et al (2002) Endonuclease III, formamidopyrimidine-DNA glycosilase and proteinase K additively enhance arsenic induced DNA strand breaks in human cells. Chem Res Toxicol 15:1254–1258

    Article  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle T (1999) POPGENE version 1.31, Microsoft window-based freeware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  • Zhiyi R, Haowen Y (2004) A method for genotoxicicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicol Environ Saf 58:96–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal K. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kesari, V.P., Alok, A.K. et al. Assessment of Arsenic-Induced DNA Damage in Goldfish by a Polymerase Chain Reaction-Based Technique Using Random Amplified Polymorphic DNA Markers. Arch Environ Contam Toxicol 67, 630–638 (2014). https://doi.org/10.1007/s00244-014-0051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0051-5

Keywords

Navigation