Skip to main content
Log in

Effect of Atrazine, Glyphosate and Quinclorac on Biochemical Parameters, Lipid Peroxidation and Survival in Bullfrog Tadpoles (Lithobates catesbeianus)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Increased use of pesticides worldwide has led to damage not only to natural ecosystems but also to nontarget species. This study assessed the effects of different concentrations of the herbicides atrazine, glyphosate, and quinclorac on biochemical parameters, lipid peroxidation, and survival in tadpoles of Lithobates catesbeianus (bullfrog). Two hundred eighty-eight tadpoles were acquired from a frog farm in the south of Brazil. All animals were kept in aquariums under controlled laboratory conditions for 7 days and exposed to commercial formulations of atrazine (5, 10, and 20 μg/L), glyphosate (36, 72, and 144 μg/L), and quinclorac (0.05, 0.10, and 0.20 μg/L) for 7 days thereafter. The concentrations used in this study are similar to the levels of these herbicides found in natural water bodies. After exposure, gill, liver, and muscle samples were removed from each animal for quantitation of glycogen, total lipids, triglycerides, cholesterol, total proteins, and lipid peroxidation. Atrazine, glyphosate, and quinclorac exposure induced a significant decrease in levels of glycogen and total lipids in gill, liver, and muscle. Triglycerides levels in the gill increased after exposure to glyphosate, and decreased after exposure to atrazine and quinclorac; their levels in liver and muscle decreased on exposure to all herbicides. Cholesterol and total protein levels decreased in liver and muscle for all three herbicides. All tissues exhibited increased lipid peroxidation after exposure to all herbicides. In conclusion, exposure to the herbicides tested in this study induced significant changes in biochemical parameters and increased lipid peroxidation levels in tadpoles of L. catesbeianus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldana-Madrid ML, Shibayama N, Calderon M, Silva A, Silveira-Gramont MI, Tsutsumi V et al (2012) Hepatic effects from subacute exposure to insecticides in adult male Wistar rats. In: Perven F (ed) Insecticides–advances in integrated pest management. Intech, Rijeka, pp 279–290

    Google Scholar 

  • Alkahen HF (1996) Effects of lethal and sublethal concentrations of lindane on the behavior and energy reserves of the freshwater fish, Oreochromis niloticus. J King Saud Univ 8:153–164

    Google Scholar 

  • Al-Othman AM, Khaled SA, Gaber EE, Kareem Y, Zeid AA, Mourad AM et al (2011) Protection of α-tocopherol and selenium against acute effects of malathion on liver and kidney of rats. Afr J Pharm Pharmacol 5:1263–1271

    Article  CAS  Google Scholar 

  • Barreiros ALBS, David JM, David JM, David JP (2006) Estresse oxidativo: Relação entre geração de espécies reativas e defesa do organismo. Quím Nova 29:113–123

    Article  CAS  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 10:3–26

    Article  Google Scholar 

  • Becker AG, Moraes BS, Menezes CC, Loro VL, Santos DR, Reichert JM et al (2009) Pesticide contamination of water alters the metabolism of juvenile silvercatfish, Rhamdia quelen. Ecotoxicol Environ Saf 72:1734–1739

    Article  CAS  Google Scholar 

  • Berti AP, Düsman E, Soares LC, Grassi LEA (2009) Efeitos da contaminação do ambiente aquático por óleos e agrotóxicos. Sabios Rev Saúde Biol 4:45–51

    Google Scholar 

  • Blaustein AR, Johnson PTJ (2003) The complexity of deformed amphibians. Front Ecol Environ 1:87–94

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipids peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Carneiro FF, Pignati W, Rigotto RM, Augusto LGS, Rizollo A, Muller NM et al (2012) Dossiê ABRASCO–Um alerta sobre os impactos dos agrotóxicos na saúde. ABRASCO, Rio de Janeiro

    Google Scholar 

  • Champe PC, Harvey RA (2006) Metabolismo dos lipídeos complexos e colesterol e metabolismo dos esteróides. In: Champe PC, Harvey RA (eds) Bioquímica ilustrada, 2nd edn. Artes Médicas, Porto Alegre, pp 199–242

    Google Scholar 

  • Chang CC, Lee PP, Hsu JP, Yeh SP, Cheng W (2006) Survival, and biochemical, physiological, and histopathological responses of the giant freshwater prawn, Macrobrachium rosenbergii, to short-term trichlorfon exposure. Aquaculture 253:653–666

    Article  CAS  Google Scholar 

  • Dörfler U, Feicht EA, Scheunert IS (1997) Triazine residues in groundwater. Chemosphere 35:99–106

    Article  Google Scholar 

  • El-Banna SG, Attia AM, Hafez AA, El-Kazaz SA (2009) Effect of garlic consumption on blood lipid and oxidant/antioxidant parameters in rat males exposed to chlorpyrifos. Slovak J Anim Sci 42:111–117

    Google Scholar 

  • Ezemonye L, Ilechie I (2007) Acute and chronic effects of organophosphate pesticides (basudin) to amphibian tadpoles (Ptychadena bibroni). Afr J Biotech 6:1554–1568

    CAS  Google Scholar 

  • Ezemonye L, Tongo I (2009) Lethal and sublethal effects of atrazine to amphibian larvae. Jordan J Biol Sci 2:29–36

    Google Scholar 

  • Fernandes Neto ML, Sarcinelli PN (2009) Agrotóxicos em água para consumo humano: Uma abordagem de avaliação de risco e contribuição ao processo de atualização da legislação brasileira. Eng Sanit Ambient 14(1):69–78

    Article  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GHA (1957) Simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Frings CE, Dunn RA (1970) Colorimetric method for determination of total serum lipids based on the sulfophosphovanillin reaction. Am J Clin Pathol 53:89–91

    CAS  Google Scholar 

  • Galon L, Concenço G, Ferreira EA, Silva AF, Ferreira FA, Noldin JA, Freitas MAM (2009) Competição entre plantas de arroz e biótipos de capim-arroz (Echinochloa spp.) resistente e suscetível ao quinclorac. Planta Daninha 27:701–709

    Google Scholar 

  • Ganeshwade RM (2012) Biochemical changes induced by dimethoate (Rogor 30 % EC) in the gills of freshwater fish Puntius ticto (Hamilton). J Ecol Nat Environ 4:181–185

    Article  CAS  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for roundup herbicide. Rev Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Gijare SS, Raja IA, Tanatarpale VT, Kulkarni KM (2011) Lipid changes in the freshwater fish Ophiocephalus punctatus exposed to synthetic pyrethroid cypermethrin. Biosci Biotech Res Commun 4:52–54

    CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Gurushankara HP, Meenakumari D, Krishnamurthy SV, Vasudev V (2007) Impact of malathion stress on lipid metabolism in Limnonectus limnocharis. Pest Biochem Physiol 88:50–56

    Article  CAS  Google Scholar 

  • Honrubia MP, Herraez MP, Alvarez R (1993) The carbamate insecticide zz-aphox(r) induced structural-changes of gills, liver, gallbladder, heart, and notochord of Rana perezi tadpoles. Arch Environ Contam Toxicol 25:184–191

    Article  Google Scholar 

  • Howe CM, Berrill M, Pauli BD, Helbring CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938

    Article  CAS  Google Scholar 

  • International Grains Council (2012) Grain market report (no. 427). ICG, London, UK

  • Kadry SM, Marzouk MS, Amer AF, Hanna MI, Azmy AH, Hamed HS (2012) Vitamin E as antioxidant in female African catfish (Clarias gariepinus) exposed to chronic toxicity of atrazine. Egypt J Aquat Biol Fish 16:83–98

    Google Scholar 

  • Khan MZ, Tabassum R, Naqvi SNH, Shah EZ, Tabassum F, Ahmad I et al (2003) Effect of cypermethrin and permethrin on cholinesterase activity and protein contents in Rana tigrina (amphibia). Turk J Zool 27:243–246

    CAS  Google Scholar 

  • Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabana MC (2010) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: b-esterases and glutathione-s-transferase inhibitors. Arch Environ Contam Toxicol 60:681–689

    Article  Google Scholar 

  • Lambropoulou DA, Sakkas VA, Hela GD, Albanis TA (2002) Application of solid-phase microextraction in the monitoring of priority pesticides in the Kalamas river (N.W. Greece). J Chromatogr 963:107–116

    Article  CAS  Google Scholar 

  • Landis WG, Yu MH (2003) Introduction to environmental toxicology: impacts of chemicals on ecological systems, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Landys MM, Piersma T, Guglielmo CG, Jukema J, Ramenofsky M, Wingfield JC (2005) Metabolic profile of long-distance migratory flight and stopover in a shorebird. Proc Royal Soc B 272:295–302

    Article  CAS  Google Scholar 

  • Marchezan E, Zanella R, Avila LA, Camargo ER, Machado SLO, Macedo VRM (2007) Rice herbicide monitoring in two Brazilian rivers during the rice growing season. Sci Agric 64:131–137

    Google Scholar 

  • McElroy S (2006) Registration of the new active ingredient, Quinclorac (chemical code 128974), contained in the new pesticide product, Ortho Weed B Gon Max Plus Crabgrass Control (EPA Reg. No. 239–2689)

  • Menezes CC, Leitemperger J, Santi A, Lópes T, Veiverberg CA, Peixoto S et al (2012) The effects of diphenyl diselenide on oxidative stress biomarkers in Cyprinus carpio exposed to herbicide quinclorac (Facet). Ecotoxicol Environ Safe 81:91–97

    Article  Google Scholar 

  • Midio AF, Martins DI (1997) Herbicidas em alimentos: Aspectos gerais, toxicológicos e analíticos. Livraria Varela, São Paulo

    Google Scholar 

  • Modesto KA, Martinez C (2010) Effects of roundup transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787

    Article  CAS  Google Scholar 

  • Montgomery MP, Kamel F, Saldana TM, Alavanja MCR, Sandler DP (2008) Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study 1993–2003. Am J Epidemiol 167:1235–1246

    Article  CAS  Google Scholar 

  • Moura MAM, Franco DAS, Matallo MB (2008) Impacto de herbicidas sobre os recursos hídricos. Rev Tecnol Inovação Agropecuária 1:142–151

    Google Scholar 

  • Moyes CD, Schulte PM (2010) Princípios De fisiologia animal. Artmed, Porto Alegre, pp 526–571

    Google Scholar 

  • Oliveira Jr RS (2001) Mecanismos de ação de herbicidas. In: Oliveira Jr RS (ed) Plantas daninhas e seu manejo. Maringá, Paraná: Napd–Um

  • Patil JA, Patil AJ, Sontakke AV, Govindwar SP (2009) Oxidative stress and antioxidants status of occupational pesticides exposed sprayers of grape gardens of western Maharashtra (India). J Environ Health Res 9:81–89

    Google Scholar 

  • Paulino MG, Sakuragui MM, Fernandes MN (2012) Effects of atrazine on the gill cells and ionic balance in a neotropical fish, Prochilodus lineatus. Chemosphere 86:1–7

    Article  CAS  Google Scholar 

  • Păunescu A, Ponepal CM (2011) Effect of Roundup herbicide on physiological indices in marsh frog Pelophylax ridibundus. Scientific Papers, UASVM Bucharest, Bucharest, pp 269–274

    Google Scholar 

  • Poleza F, Souza RC, Stramosk CA, Rorig LR, Resgalla C Jr (2008) Avaliação da toxicidade aguda para o organismo-teste Vibrio fischeri dos principais herbicidas e inseticidas aplicados na lavoura de arroz irrigado dos estados de Santa Catarina e Rio Grande Do Sul Pesticidas. Rev Ecotoxicol Meio Ambiente 18:107–114

    CAS  Google Scholar 

  • Rambabu JP, Rao MB (1994) Effect of organochlorine and three organophosphate pesticides on glucose, glycogen, lipid and protein contents in tissues of the freshwater snail Bellamya dissimilis (muk ller). Bull Environ Contam Toxicol 53:142–148

    CAS  Google Scholar 

  • Reimche GB, Machado SLO, Golombieski JI, Baumart JS, Braun N, Marchesan E et al (2008) Persistência na água e influência de herbicidas utilizados na lavoura arrozeira sobre a comunidade zooplanctônica de cladocera, copepoda e rotifera. Ciência Rural Santa Maria 38(1):7–13

    Article  CAS  Google Scholar 

  • Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627

    Article  Google Scholar 

  • Ribeiro S, Sousa JP, Nogueira AJA, Soares AMVM (2001) Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol Environ Saf 49:131–138

    Article  CAS  Google Scholar 

  • Rodrigues NR, Almeida FS (1998) Guia de herbicidas (4th ed). Londrina pp 137–142

  • Roy S, Hänninen O (1993) Biochemical monitoring of the aquatic environment: Possibilities and limitations. In: Richardson M (ed) Ecotoxicology monitoring. VCH-Verlag, Weinheim, pp 119–135

    Google Scholar 

  • Sak O, Uçkan F, Ergin E (2006) Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (Hymenoptera: Ichneumonidae). Belg J Zool 136:53–58

    Google Scholar 

  • Salbego J, Pretto A, Gioda CR, Menezes CC, Lazzari R, Neto JR et al (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58:740–745

    Article  CAS  Google Scholar 

  • Sawant VA, Varute AT (1973) Lipid changes in the tadpoles of Rana tigrina during growth and metamorphosis. Comp Biochem Physiol 44:729–750

    CAS  Google Scholar 

  • Shakoori AR, Mughal AL, Iqbal MJ (1996) Effects of sublethal doses of fenvalerate (a synthetic pyrethroid) administered continuously for four weeks on the blood, liver and muscles of a freshwater fish, Ctenopharyngodon idella. Bull Environ Contam Toxicol 57:487–494

    Article  CAS  Google Scholar 

  • Silva MD, Peralba MCR, Mattos MLT (2003) Pesticidas. Rev Ecotoxicol Meio Ambiente 13:19–28

    Google Scholar 

  • Silva DRO, Avila LA, Agostinetto D, Dal Magro T, Oliveira E, Zanella R et al (2009) Monitoramento de agrotóxicos em águas superficiais de regiões orizícolas no sul do Brasil. Ci Rural 39:2383–2389

    Article  Google Scholar 

  • Solomon KR, Baker DB, Richards RP, Kenneth RD, Klaine SJ, Lapoint TW et al (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  • Sounderraj SFL, Sekhar P, Kumar PS, Lesley N (2011) Effect of systemic pesticide phosphamidon on haematological aspects of common frog Rana tigrina. Int J Pharm Biol Arch 2:1776–1780

    Google Scholar 

  • Spadotto CA (2006) Avaliação de riscos ambientais de agrotóxicos em condições brasileiras. Documentos, Jaguariúna, Embrapa Meio Ambiente, 58

  • Spadotto CA, Scorza Jr RP, Dores EFGC, Gebler L, Moraes DAC (2010) Fundamentos e aplicações da modelagem ambiental de agrotóxicos. Documentos, Campinas, Embrapa Meio Ambiente, 78

  • Tomlin C (1994) The pesticide manual–Incorporating the agrochemicals handbook, 10th edn. British Council, Cambridge

    Google Scholar 

  • Trabalon M, Blais C (2012) Juvenile development, ecdysteroids and hemolymph level of metabolites in the spider Brachypelma albopilosum (Theraphosidae). J Exp Zool 317:236–247

    Article  CAS  Google Scholar 

  • Uchendu C, Ambali SF, Ayo JO (2012) The organophosphate, chlorpyrifos, oxidative stress and the role of some antioxidants: a review. Afr J Agric Res 7:2720–2728

    Google Scholar 

  • Van Handel E (1965) Estimation of glycogen in small amount soft tissue. Anal Biochem 11:256–265

    Article  Google Scholar 

  • Vutukuru SS (2005) Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita. Int J Environ Res Public Health 2:456–462

    Article  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, London

    Google Scholar 

  • Zaya RM, Amini Z, Whitaker AS, Kohler SL, Ide CF (2011) Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles. Aquat Toxicol 104:243–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Taran Grant, Dr. Nelson Ferreira Fontoura, the team at the PUCRS Laboratory of Conservation Physiology, and CAPES for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guendalina Turcato Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornelles, M.F., Oliveira, G.T. Effect of Atrazine, Glyphosate and Quinclorac on Biochemical Parameters, Lipid Peroxidation and Survival in Bullfrog Tadpoles (Lithobates catesbeianus). Arch Environ Contam Toxicol 66, 415–429 (2014). https://doi.org/10.1007/s00244-013-9967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9967-4

Keywords

Navigation