Effect of Atrazine, Glyphosate and Quinclorac on Biochemical Parameters, Lipid Peroxidation and Survival in Bullfrog Tadpoles (Lithobates catesbeianus)

  • Michele Flores Dornelles
  • Guendalina Turcato Oliveira


Increased use of pesticides worldwide has led to damage not only to natural ecosystems but also to nontarget species. This study assessed the effects of different concentrations of the herbicides atrazine, glyphosate, and quinclorac on biochemical parameters, lipid peroxidation, and survival in tadpoles of Lithobates catesbeianus (bullfrog). Two hundred eighty-eight tadpoles were acquired from a frog farm in the south of Brazil. All animals were kept in aquariums under controlled laboratory conditions for 7 days and exposed to commercial formulations of atrazine (5, 10, and 20 μg/L), glyphosate (36, 72, and 144 μg/L), and quinclorac (0.05, 0.10, and 0.20 μg/L) for 7 days thereafter. The concentrations used in this study are similar to the levels of these herbicides found in natural water bodies. After exposure, gill, liver, and muscle samples were removed from each animal for quantitation of glycogen, total lipids, triglycerides, cholesterol, total proteins, and lipid peroxidation. Atrazine, glyphosate, and quinclorac exposure induced a significant decrease in levels of glycogen and total lipids in gill, liver, and muscle. Triglycerides levels in the gill increased after exposure to glyphosate, and decreased after exposure to atrazine and quinclorac; their levels in liver and muscle decreased on exposure to all herbicides. Cholesterol and total protein levels decreased in liver and muscle for all three herbicides. All tissues exhibited increased lipid peroxidation after exposure to all herbicides. In conclusion, exposure to the herbicides tested in this study induced significant changes in biochemical parameters and increased lipid peroxidation levels in tadpoles of L. catesbeianus.


Lipid Peroxidation Atrazine Triglyceride Level Glyphosate Increase Lipid Peroxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Taran Grant, Dr. Nelson Ferreira Fontoura, the team at the PUCRS Laboratory of Conservation Physiology, and CAPES for supporting this study.


  1. Aldana-Madrid ML, Shibayama N, Calderon M, Silva A, Silveira-Gramont MI, Tsutsumi V et al (2012) Hepatic effects from subacute exposure to insecticides in adult male Wistar rats. In: Perven F (ed) Insecticides–advances in integrated pest management. Intech, Rijeka, pp 279–290Google Scholar
  2. Alkahen HF (1996) Effects of lethal and sublethal concentrations of lindane on the behavior and energy reserves of the freshwater fish, Oreochromis niloticus. J King Saud Univ 8:153–164Google Scholar
  3. Al-Othman AM, Khaled SA, Gaber EE, Kareem Y, Zeid AA, Mourad AM et al (2011) Protection of α-tocopherol and selenium against acute effects of malathion on liver and kidney of rats. Afr J Pharm Pharmacol 5:1263–1271CrossRefGoogle Scholar
  4. Barreiros ALBS, David JM, David JM, David JP (2006) Estresse oxidativo: Relação entre geração de espécies reativas e defesa do organismo. Quím Nova 29:113–123CrossRefGoogle Scholar
  5. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 10:3–26CrossRefGoogle Scholar
  6. Becker AG, Moraes BS, Menezes CC, Loro VL, Santos DR, Reichert JM et al (2009) Pesticide contamination of water alters the metabolism of juvenile silvercatfish, Rhamdia quelen. Ecotoxicol Environ Saf 72:1734–1739CrossRefGoogle Scholar
  7. Berti AP, Düsman E, Soares LC, Grassi LEA (2009) Efeitos da contaminação do ambiente aquático por óleos e agrotóxicos. Sabios Rev Saúde Biol 4:45–51Google Scholar
  8. Blaustein AR, Johnson PTJ (2003) The complexity of deformed amphibians. Front Ecol Environ 1:87–94CrossRefGoogle Scholar
  9. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194CrossRefGoogle Scholar
  10. Buege JA, Aust SD (1978) Microsomal lipids peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  11. Carneiro FF, Pignati W, Rigotto RM, Augusto LGS, Rizollo A, Muller NM et al (2012) Dossiê ABRASCO–Um alerta sobre os impactos dos agrotóxicos na saúde. ABRASCO, Rio de JaneiroGoogle Scholar
  12. Champe PC, Harvey RA (2006) Metabolismo dos lipídeos complexos e colesterol e metabolismo dos esteróides. In: Champe PC, Harvey RA (eds) Bioquímica ilustrada, 2nd edn. Artes Médicas, Porto Alegre, pp 199–242Google Scholar
  13. Chang CC, Lee PP, Hsu JP, Yeh SP, Cheng W (2006) Survival, and biochemical, physiological, and histopathological responses of the giant freshwater prawn, Macrobrachium rosenbergii, to short-term trichlorfon exposure. Aquaculture 253:653–666CrossRefGoogle Scholar
  14. Dörfler U, Feicht EA, Scheunert IS (1997) Triazine residues in groundwater. Chemosphere 35:99–106CrossRefGoogle Scholar
  15. El-Banna SG, Attia AM, Hafez AA, El-Kazaz SA (2009) Effect of garlic consumption on blood lipid and oxidant/antioxidant parameters in rat males exposed to chlorpyrifos. Slovak J Anim Sci 42:111–117Google Scholar
  16. Ezemonye L, Ilechie I (2007) Acute and chronic effects of organophosphate pesticides (basudin) to amphibian tadpoles (Ptychadena bibroni). Afr J Biotech 6:1554–1568Google Scholar
  17. Ezemonye L, Tongo I (2009) Lethal and sublethal effects of atrazine to amphibian larvae. Jordan J Biol Sci 2:29–36Google Scholar
  18. Fernandes Neto ML, Sarcinelli PN (2009) Agrotóxicos em água para consumo humano: Uma abordagem de avaliação de risco e contribuição ao processo de atualização da legislação brasileira. Eng Sanit Ambient 14(1):69–78CrossRefGoogle Scholar
  19. Folch J, Lees M, Sloane-Stanley GHA (1957) Simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  20. Frings CE, Dunn RA (1970) Colorimetric method for determination of total serum lipids based on the sulfophosphovanillin reaction. Am J Clin Pathol 53:89–91Google Scholar
  21. Galon L, Concenço G, Ferreira EA, Silva AF, Ferreira FA, Noldin JA, Freitas MAM (2009) Competição entre plantas de arroz e biótipos de capim-arroz (Echinochloa spp.) resistente e suscetível ao quinclorac. Planta Daninha 27:701–709Google Scholar
  22. Ganeshwade RM (2012) Biochemical changes induced by dimethoate (Rogor 30 % EC) in the gills of freshwater fish Puntius ticto (Hamilton). J Ecol Nat Environ 4:181–185CrossRefGoogle Scholar
  23. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for roundup herbicide. Rev Contam Toxicol 167:35–120Google Scholar
  24. Gijare SS, Raja IA, Tanatarpale VT, Kulkarni KM (2011) Lipid changes in the freshwater fish Ophiocephalus punctatus exposed to synthetic pyrethroid cypermethrin. Biosci Biotech Res Commun 4:52–54Google Scholar
  25. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  26. Gurushankara HP, Meenakumari D, Krishnamurthy SV, Vasudev V (2007) Impact of malathion stress on lipid metabolism in Limnonectus limnocharis. Pest Biochem Physiol 88:50–56CrossRefGoogle Scholar
  27. Honrubia MP, Herraez MP, Alvarez R (1993) The carbamate insecticide zz-aphox(r) induced structural-changes of gills, liver, gallbladder, heart, and notochord of Rana perezi tadpoles. Arch Environ Contam Toxicol 25:184–191CrossRefGoogle Scholar
  28. Howe CM, Berrill M, Pauli BD, Helbring CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938CrossRefGoogle Scholar
  29. International Grains Council (2012) Grain market report (no. 427). ICG, London, UKGoogle Scholar
  30. Kadry SM, Marzouk MS, Amer AF, Hanna MI, Azmy AH, Hamed HS (2012) Vitamin E as antioxidant in female African catfish (Clarias gariepinus) exposed to chronic toxicity of atrazine. Egypt J Aquat Biol Fish 16:83–98Google Scholar
  31. Khan MZ, Tabassum R, Naqvi SNH, Shah EZ, Tabassum F, Ahmad I et al (2003) Effect of cypermethrin and permethrin on cholinesterase activity and protein contents in Rana tigrina (amphibia). Turk J Zool 27:243–246Google Scholar
  32. Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabana MC (2010) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: b-esterases and glutathione-s-transferase inhibitors. Arch Environ Contam Toxicol 60:681–689CrossRefGoogle Scholar
  33. Lambropoulou DA, Sakkas VA, Hela GD, Albanis TA (2002) Application of solid-phase microextraction in the monitoring of priority pesticides in the Kalamas river (N.W. Greece). J Chromatogr 963:107–116CrossRefGoogle Scholar
  34. Landis WG, Yu MH (2003) Introduction to environmental toxicology: impacts of chemicals on ecological systems, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  35. Landys MM, Piersma T, Guglielmo CG, Jukema J, Ramenofsky M, Wingfield JC (2005) Metabolic profile of long-distance migratory flight and stopover in a shorebird. Proc Royal Soc B 272:295–302CrossRefGoogle Scholar
  36. Marchezan E, Zanella R, Avila LA, Camargo ER, Machado SLO, Macedo VRM (2007) Rice herbicide monitoring in two Brazilian rivers during the rice growing season. Sci Agric 64:131–137Google Scholar
  37. McElroy S (2006) Registration of the new active ingredient, Quinclorac (chemical code 128974), contained in the new pesticide product, Ortho Weed B Gon Max Plus Crabgrass Control (EPA Reg. No. 239–2689)Google Scholar
  38. Menezes CC, Leitemperger J, Santi A, Lópes T, Veiverberg CA, Peixoto S et al (2012) The effects of diphenyl diselenide on oxidative stress biomarkers in Cyprinus carpio exposed to herbicide quinclorac (Facet). Ecotoxicol Environ Safe 81:91–97CrossRefGoogle Scholar
  39. Midio AF, Martins DI (1997) Herbicidas em alimentos: Aspectos gerais, toxicológicos e analíticos. Livraria Varela, São PauloGoogle Scholar
  40. Modesto KA, Martinez C (2010) Effects of roundup transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787CrossRefGoogle Scholar
  41. Montgomery MP, Kamel F, Saldana TM, Alavanja MCR, Sandler DP (2008) Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study 1993–2003. Am J Epidemiol 167:1235–1246CrossRefGoogle Scholar
  42. Moura MAM, Franco DAS, Matallo MB (2008) Impacto de herbicidas sobre os recursos hídricos. Rev Tecnol Inovação Agropecuária 1:142–151Google Scholar
  43. Moyes CD, Schulte PM (2010) Princípios De fisiologia animal. Artmed, Porto Alegre, pp 526–571Google Scholar
  44. Oliveira Jr RS (2001) Mecanismos de ação de herbicidas. In: Oliveira Jr RS (ed) Plantas daninhas e seu manejo. Maringá, Paraná: Napd–UmGoogle Scholar
  45. Patil JA, Patil AJ, Sontakke AV, Govindwar SP (2009) Oxidative stress and antioxidants status of occupational pesticides exposed sprayers of grape gardens of western Maharashtra (India). J Environ Health Res 9:81–89Google Scholar
  46. Paulino MG, Sakuragui MM, Fernandes MN (2012) Effects of atrazine on the gill cells and ionic balance in a neotropical fish, Prochilodus lineatus. Chemosphere 86:1–7CrossRefGoogle Scholar
  47. Păunescu A, Ponepal CM (2011) Effect of Roundup herbicide on physiological indices in marsh frog Pelophylax ridibundus. Scientific Papers, UASVM Bucharest, Bucharest, pp 269–274Google Scholar
  48. Poleza F, Souza RC, Stramosk CA, Rorig LR, Resgalla C Jr (2008) Avaliação da toxicidade aguda para o organismo-teste Vibrio fischeri dos principais herbicidas e inseticidas aplicados na lavoura de arroz irrigado dos estados de Santa Catarina e Rio Grande Do Sul Pesticidas. Rev Ecotoxicol Meio Ambiente 18:107–114Google Scholar
  49. Rambabu JP, Rao MB (1994) Effect of organochlorine and three organophosphate pesticides on glucose, glycogen, lipid and protein contents in tissues of the freshwater snail Bellamya dissimilis (muk ller). Bull Environ Contam Toxicol 53:142–148Google Scholar
  50. Reimche GB, Machado SLO, Golombieski JI, Baumart JS, Braun N, Marchesan E et al (2008) Persistência na água e influência de herbicidas utilizados na lavoura arrozeira sobre a comunidade zooplanctônica de cladocera, copepoda e rotifera. Ciência Rural Santa Maria 38(1):7–13CrossRefGoogle Scholar
  51. Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627CrossRefGoogle Scholar
  52. Ribeiro S, Sousa JP, Nogueira AJA, Soares AMVM (2001) Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol Environ Saf 49:131–138CrossRefGoogle Scholar
  53. Rodrigues NR, Almeida FS (1998) Guia de herbicidas (4th ed). Londrina pp 137–142Google Scholar
  54. Roy S, Hänninen O (1993) Biochemical monitoring of the aquatic environment: Possibilities and limitations. In: Richardson M (ed) Ecotoxicology monitoring. VCH-Verlag, Weinheim, pp 119–135Google Scholar
  55. Sak O, Uçkan F, Ergin E (2006) Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (Hymenoptera: Ichneumonidae). Belg J Zool 136:53–58Google Scholar
  56. Salbego J, Pretto A, Gioda CR, Menezes CC, Lazzari R, Neto JR et al (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58:740–745CrossRefGoogle Scholar
  57. Sawant VA, Varute AT (1973) Lipid changes in the tadpoles of Rana tigrina during growth and metamorphosis. Comp Biochem Physiol 44:729–750Google Scholar
  58. Shakoori AR, Mughal AL, Iqbal MJ (1996) Effects of sublethal doses of fenvalerate (a synthetic pyrethroid) administered continuously for four weeks on the blood, liver and muscles of a freshwater fish, Ctenopharyngodon idella. Bull Environ Contam Toxicol 57:487–494CrossRefGoogle Scholar
  59. Silva MD, Peralba MCR, Mattos MLT (2003) Pesticidas. Rev Ecotoxicol Meio Ambiente 13:19–28Google Scholar
  60. Silva DRO, Avila LA, Agostinetto D, Dal Magro T, Oliveira E, Zanella R et al (2009) Monitoramento de agrotóxicos em águas superficiais de regiões orizícolas no sul do Brasil. Ci Rural 39:2383–2389CrossRefGoogle Scholar
  61. Solomon KR, Baker DB, Richards RP, Kenneth RD, Klaine SJ, Lapoint TW et al (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76CrossRefGoogle Scholar
  62. Sounderraj SFL, Sekhar P, Kumar PS, Lesley N (2011) Effect of systemic pesticide phosphamidon on haematological aspects of common frog Rana tigrina. Int J Pharm Biol Arch 2:1776–1780Google Scholar
  63. Spadotto CA (2006) Avaliação de riscos ambientais de agrotóxicos em condições brasileiras. Documentos, Jaguariúna, Embrapa Meio Ambiente, 58Google Scholar
  64. Spadotto CA, Scorza Jr RP, Dores EFGC, Gebler L, Moraes DAC (2010) Fundamentos e aplicações da modelagem ambiental de agrotóxicos. Documentos, Campinas, Embrapa Meio Ambiente, 78Google Scholar
  65. Tomlin C (1994) The pesticide manual–Incorporating the agrochemicals handbook, 10th edn. British Council, CambridgeGoogle Scholar
  66. Trabalon M, Blais C (2012) Juvenile development, ecdysteroids and hemolymph level of metabolites in the spider Brachypelma albopilosum (Theraphosidae). J Exp Zool 317:236–247CrossRefGoogle Scholar
  67. Uchendu C, Ambali SF, Ayo JO (2012) The organophosphate, chlorpyrifos, oxidative stress and the role of some antioxidants: a review. Afr J Agric Res 7:2720–2728Google Scholar
  68. Van Handel E (1965) Estimation of glycogen in small amount soft tissue. Anal Biochem 11:256–265CrossRefGoogle Scholar
  69. Vutukuru SS (2005) Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita. Int J Environ Res Public Health 2:456–462CrossRefGoogle Scholar
  70. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, LondonGoogle Scholar
  71. Zaya RM, Amini Z, Whitaker AS, Kohler SL, Ide CF (2011) Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles. Aquat Toxicol 104:243–253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michele Flores Dornelles
    • 1
  • Guendalina Turcato Oliveira
    • 1
    • 2
  1. 1.Laboratório de Fisiologia da Conservação, Departamento de Ciências Morfofisiológicas, Faculdade de BiociênciasPontifícia Universidade Católica Do Rio Grande do SulPorto AlegreBrazil
  2. 2.Bolsista de Produtividade do CNPqBrasiliaBrazil

Personalised recommendations