Skip to main content
Log in

Heavy-Metal Content and Oxidative Damage in Hypsiboas faber: The Impact of Coal-Mining Pollutants on Amphibians

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

It has been identified worldwide that amphibians are experiencing massive population declines. This decrease could be further enhanced by the exposure of amphibians to pollutants, which would enhance reactive oxygen species production and cause subsequent alterations in oxidant defense levels. The present study was aimed at understanding the impact of mineral coal on amphibians. For this purpose, chemical elemental contents and oxidative stress indexes in Hypsiboas faber from coal-mining areas and in an unpolluted area in the Catarinense Coal Basin, Brazil, were assessed. The highest contents of sulfur, chlorine, iron, zinc, and bromine were registered in specimens from the coal-mining area, whereas the highest contents of potassium calcium, and silicon were registered in specimens from the control area. It was found that there was a significant increase (p < 0.05) in the activity of super oxide dismutase (SOD) and glutathione peroxidase (GPx) in the animals from the coal-mining area, whereas the level of catalase showed no differences between the animal groups. The levels of TBARS showed no differences between the tested groups. However, carbonylation decreased significantly (p < 0.05) in animals from the coal-mining area, and there was a significant increase (p < 0.05) in the formation of total thiols in animals from the coal-mining area. In conclusion, the antioxidant system of H. faber is sensitive to pollutants present in coal-mining wastes, and its SOD and GPx activity may be a potential biomarker for monitoring the level of contaminants in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Aksenov MY, Markesberya WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  Google Scholar 

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71

    Article  Google Scholar 

  • Associação Brasileira do Carvão Mineral (ABCM) (2013). http://www.carvaomineral.com.br. Accessed 20 Jan 2013

  • Atli G, Canli C (2007) Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comp Biochem Physiol C 145:282–287

    Google Scholar 

  • Bannister JV, Calabrese L (1987) Assays for SOD. Methods Biochem Anal 32:279–312

    Article  CAS  Google Scholar 

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–1559

    Article  CAS  Google Scholar 

  • Borda M, Elsetinow A, Schoonen M, Strongin D (2001) Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology 1:283–288

    Article  CAS  Google Scholar 

  • Campbell JL, Hopman TL, Maxwell JA, Nejedly Z (2000) The Guelph PIXE software package III: alternative proton database. Nucl Instrum Methods Phys Res B 170:193–204

    Article  CAS  Google Scholar 

  • Casalino E, Sblano C, Calzaretti G, Landriscina C (2006) Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver. Toxicology 217:240–245

    Article  CAS  Google Scholar 

  • Chakraborty R, Mukherjee A (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol Environ Saf 72:838–842

    Article  CAS  Google Scholar 

  • Cohn CA, Borda MJ, Schoonen MA (2004) RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet Sci Lett 225:271–278

    Article  CAS  Google Scholar 

  • Cohn CA, Pak A, Schoonen MAA, Strongin DR (2005) Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochem Trans 6:47–52

    Article  CAS  Google Scholar 

  • Cohn CA, Mueller S, Wimmer E, Leifer N, Greenbaum S, Strongi DR et al (2006) Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans 7:1–11

    Article  CAS  Google Scholar 

  • Costa S, Zocche JJ (2009) Fertilidade de solos em áreas de mineração na região sul de Santa Catarina. Rev Árv 33:665–674

    CAS  Google Scholar 

  • Draper HH, Hadley M (1990) A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde. Xenobiotica 20:901–907

    Article  CAS  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of amphibians. John’s Hopkins University Press, Baltimore

    Google Scholar 

  • Ezemonye LI, Enuneku AA (2011) Biochemical changes in the toad Bufo maculatus treated with sub lethal concentrations of cadmium. World J Biol Res 4:15–20

    Google Scholar 

  • Falfushinska H, Loumbourdis N, Romanchuk L, Stolyar O (2008) Validation of oxidative stress responses in two populations of frogs from Western Ukraine. Chemosphere 73:1096–1101

    Article  CAS  Google Scholar 

  • Finkelman RB (1995) Modes of occurrence of environmentally sensitive trace elements in coal. In: Swaine DJ, Goodarzi F (eds) Environmental aspects of trace elements in coal. Kluwer, Dordrecht, pp 24–50

    Chapter  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Google Scholar 

  • Gupta S, Athar M, Behari JR, Srivastava RC (1991) Cadmium-mediated induction of cellular defense mechanism: a novel example for the development of adaptive response against a toxicant. Ind Health 29:1–9

    Article  CAS  Google Scholar 

  • He F, Buoso MC, Burattini E, Fazinic S, Galassini S, Haque AMI et al (1993) Target preparation for trace element determination of biological materials using techniques. Nucl Instrum Methods Phys Res A 334:238–245

    Article  CAS  Google Scholar 

  • Henkler F, Brinkmann J, Luch A (2010) The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers 2:376–396

    Article  CAS  Google Scholar 

  • Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57:11–26

    Article  CAS  Google Scholar 

  • Hopkins WA, Congdon JD, Rowe CL, Mendonça MT (1998) Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste. Arch Environ Contam Toxicol 35:325–329

    Article  CAS  Google Scholar 

  • Hopkins WA, Congdon J, Ray JK (2000) Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant. Environ Toxicol Chem 19:862–868

    CAS  Google Scholar 

  • Hopkins WA, Du Rant SE, Staub BP, Rowe CL, Jackson BP (2006) Reproduction, embryonic development, and maternal transfer of contaminants in the amphibian Gastrophryne carolinensis. Environ Health Perspect 114:661–666

    Article  CAS  Google Scholar 

  • Johansson SA, Campbell JL, Malmqvist KG (1995) Particle-induced X-ray emission spectrometry (PIXE), 1st edn. Wiley, New York

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human, 1st edn. Springer, New York

    Book  Google Scholar 

  • Kamiński P, Kurhalyuk N, Szady-Grad M (2007) Heavy metal-induced oxidative stress and changes in physiological process of free radicals in the blood of white stork (Ciconia ciconia) chicks in polluted areas. Pollut J Environ Stud 16:555–562

    Google Scholar 

  • Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  Google Scholar 

  • Kuzmick DM, Mitchelmore CL, Hopkins WA, Rowe CL (2007) Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius). Sci Total Environ 373:420–430

    Article  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    CAS  Google Scholar 

  • Liu G, Vassilev SV, Gao l, Zheng L, Peng Z (2005) Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field. Energy Convers Manag 46:2001–2009

    Article  CAS  Google Scholar 

  • Loumbourdis NS (1997) Heavy metal contamination in a lizard, Agama stellio stellio, compared in urban, high altitude and agricultural, low altitude areas of North Greece. Bull Environ Contam Toxicol 58:945–952

    Article  CAS  Google Scholar 

  • Loumbourdis NS, Wray D (1998) Heavy metal concentration in the frog Rana ridibunda from a small river of Macedonia, northern Greece. Environ Int 24:427–431

    Article  CAS  Google Scholar 

  • Maxwell JA, Teesdale WJ, Campbell JL (1995) The Guelph PIXE software package II. Nucl Instrum Methods Phys Res B 95:407–421

    Article  CAS  Google Scholar 

  • Mireles A, Solís C, Andrade E, Lagunas-Solar M, Pina C, Flocchini RG (2004) Heavy metal accumulation in plants and soil irrigated with waste water from Mexico City. Nucl Instrum Meth Phys Res B 220:187–190

    Article  Google Scholar 

  • Nelson RJ (2000) Stress: an introduction to behavioral endocrinology. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • O’Shea TJ (2001) Impacts of mine related contaminants on bats. In: Vories KC, Throgmorton D (eds) Proceedings of bat conservation and mining: a technical interactive forum. United States Department of the Interior, Office of Surface Mining, St. Louis, MO, pp 205–216

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: A comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ 309:105–115

    Article  CAS  Google Scholar 

  • Peltier GL, Wright MS, Hopkins WA, Meyer JL (2009) Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant. Ecotoxicol Environ Saf 72:1384–1391

    Article  CAS  Google Scholar 

  • Peterson JD, Peterson VA, Mendonça MT (2009) Exposure to coal combustion residues during metamorphosis elevates corticosterone content and adversely affects oral morphology, growth, and development in Rana sphenocephala. Comp Biochem Physiol C 149:36–39

    Google Scholar 

  • Pires M, Querol X (2004) Characterization of Candiota (South Brazil) coal and combustion by-product. Int J Coal Geol 60:57–72

    Article  CAS  Google Scholar 

  • Regoli F, Principato G (1995) Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytillus galloprovincialis exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarker. Aquat Toxicol 31:143–164

    Article  CAS  Google Scholar 

  • Roe JH, Hopkins WA, Jackson BP (2005) Species and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes. Environ Pollut 136:353–363

    Article  CAS  Google Scholar 

  • Rogival D, Van Campenhout K, Infante HG, Hearn R, Sheirs J, Blust R (2007) Induction and metal speciation of metallothionein in wood mice (Apodemus sylvaticus) along a metal pollution gradient. Environ Toxicol Chem 26:506–514

    Article  CAS  Google Scholar 

  • Rohr P, Silva J, Silva FR, Sarmento M, Porto C, Debastiani R, Santos CEI et al (2013) Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus Cytome assay. Environ Mol Mutagen 54:65–71

    Article  CAS  Google Scholar 

  • Rowe CL, Kinney OM, Nagle RD, Congdon JD (1998) Elevated maintenance costs in an anuran (Rana catesbeiana) exposed to a mixture of trace elements during the embryonic and early larval periods. Physiol Zool 71:27–35

    Article  CAS  Google Scholar 

  • Rowe CL, Hopkins WA, Coffman VR (2001) Failed recruitment of southern toads (Bufo terrestris) in a trace element-contaminated breeding habitat: direct and indirect effects that may lead to a local population sink. Arch Environ Contam Toxicol 40:399–405

    Article  CAS  Google Scholar 

  • Rowe CL, Hopkins WA, Congdon JD (2002) Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environ Monit Assess 80:207–276

    Article  CAS  Google Scholar 

  • Schiesari L, Grillitsch B, Grillitsch H (2007) Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conserv Biol 21:465–471

    Article  Google Scholar 

  • Schins RP, Borm PJ (1999) Mechanisms and mediators in coal dust induced toxicity: a review. Ann Occup Hyg 43:7–33

    CAS  Google Scholar 

  • Silva LFO, Oliveira MLS, da Boit KM, Finkelman RB (2009) Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environ Geochem Health 31:475–485

    Article  CAS  Google Scholar 

  • Silva LFO, Izquierdo M, Querol X, Finkelman RB, Oliveira MLS, Wollenschlager M et al (2011a) Leaching of potential hazardous elements of coal cleaning rejects. Environ Monit Assess 175:109–126

    Article  CAS  Google Scholar 

  • Silva LFO, Wollenschlager M, Oliveira LS (2011b) A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil. Environ Geochem Health 33:55–65

    Article  CAS  Google Scholar 

  • Snodgrass JW, Hopkins WA, Broughton J, Gwinn D, Baionno JA, Burger J (2004) Species-specific responses of developing anurans to coal combustion wastes. Aquat Toxicol 66:171–182

    Article  CAS  Google Scholar 

  • Stanic B, Andric N, Zoric S, Grubor-Lajsic G, Kovacevic R (2006) Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in sterlet (Acipenser ruthenus L.). Ecotoxicol Environ Saf 65:395–402

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Wong CKC, Wong MH (2000) Morphological and biochemical changes in the gills of tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquat Toxicol 48:517–527

    Article  CAS  Google Scholar 

  • Zocche JJ, Leffa DD, Paganini AD, Carvalho F, Mendonça RA, Santos CEL et al (2010a) Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense Coal Basin, Brazil. Environ Res 110:684–691

    Article  CAS  Google Scholar 

  • Zocche JJ, de Freitas M, Quadros KE (2010b) Concentração de Zn e Mn nos efluentes do beneficiamento de carvão mineral e em Typha domingensis PERS (Typhaceae). Rev Árv 34:1077–1088

    Google Scholar 

  • Zocche JJ, Paganini AD, Hainzenreder G, Mendonça RA, Peres PB, Santos CEL et al (2013) Assessment of heavy-metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine. Environ Toxicol Pharmacol 36:194–201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was funded by The Programa de Iniciação Científica da Universidade do Extremo Sul Catarinense, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo José Zocche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zocche, J.J., da Silva, L.A., Damiani, A.P. et al. Heavy-Metal Content and Oxidative Damage in Hypsiboas faber: The Impact of Coal-Mining Pollutants on Amphibians. Arch Environ Contam Toxicol 66, 69–77 (2014). https://doi.org/10.1007/s00244-013-9949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9949-6

Keywords

Navigation