Skip to main content
Log in

Linking Hematological, Biochemical, Genotoxic, and Behavioral Responses to Crude Oil in the Amazon Fish Colossoma macropomum (Cuvier, 1816)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Despite safety protocols, crude oil extraction and transportation in the Amazon basin has a potential for inadvertent oil spills, which can impact aquatic organisms in local rivers. The objective of this study was to assess the effects of crude oil on juvenile Amazonian fish tambaqui, Colossoma macropomum, at various biological levels. Furthermore, the effect of crude oil on response to alarm substance, an important communication system in fish, was reported for the first time. Fish exposed to crude oil showed a 90 % decrease in their response to alarm substance and a 60 % decrease in swimming activity relative to control fish. Basic hematology was not affected, although an increase of 200 % of DNA damage and an increase of GST activity were observed in animals exposed to crude oil. Inverse correlations were found between genotoxicity end points and behavioral parameters, suggesting that genotoxic end points can also reflect behavioral changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achuba FI, Osakwe SA (2003) Petroleum-induced free radical toxicity in African catfish (Clarias gariepinus). Fish Physiol Biochem 29:97–103

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alkindi AYA, Brown JA, Waring CP, Collins JE (1996) Endocrine, osmoregulatory, respiratory and haematological parameters in flounder exposed to the water soluble fraction of crude oil. J Fish Biol 49:1291–1305

    Article  CAS  Google Scholar 

  • Bouraoui Z, Banni M, Ghedira J, Clerandeau C, Narbonne JF, Boussetta H (2009) Evaluation of enzymatic biomarkers and lipoperoxidation level in Hediste diversicolor exposed to copper and benzo[a]pyrene. Ecotoxicol Environ Saf 72:1893–1898

    Article  CAS  Google Scholar 

  • Brauner CJ, Ballantyne CL, Vijayan MM, Val AL (1999) Crude oil exposure affects air-breathing frequency, blood phosphate levels and ion regulation in an air-breathing teleost fish, Hoplosternum littorale. Comp Biochem Physiol C Toxicol Pharmacol 123:127–134

    CAS  Google Scholar 

  • Brewer SK, Little EE, DeLonay AJ, Beauvais SL, Jones SB, Ellersieck MR (2001) Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals. Arch Environ Contam Toxicol 40:70–76

    Article  CAS  Google Scholar 

  • Brown BA (1976) Hematology principles and procedures, 2nd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Brown GE, Smith RJF (1997) Conspecific skin extracts elicit antipredator responses in juvenile rainbow trout (Oncorhynchus mykiss). Can J Zool 75:1916–1922

    Article  Google Scholar 

  • Çavas T, Ergene-Gözükara S (2005) Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquat Toxicol 74:264–271

    Article  Google Scholar 

  • Claireaux G, Lefrançois C (2007) Linking environmental variability and fish performance: Integration through the concept of scope for activity. Philos Trans R Soc Lond B Biol Sci 362:2031–2041

    Article  Google Scholar 

  • Correa LM, Kochhann D, Becker AG, Pavanato MA, Llesuy SF, Loro VL et al (2008) Biochemistry, cytogenetics and bioaccumulation in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Aquat Toxicol 88:250–256

    Article  CAS  Google Scholar 

  • Cotelle S, Férard JF (1999) Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34:246–255

    Article  CAS  Google Scholar 

  • Domenici P, Claireaux G, McKenzie DJ (2007) Environmental constraints upon locomotion and predator–prey interactions in aquatic organisms: an introduction. Philos Trans R Soc Lond B Biol Sci 362:1929–1936

    Article  CAS  Google Scholar 

  • Duarte RM, Honda RT, Val AL (2010) Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum). Aquat Toxicol 97(2):134–141

    Article  CAS  Google Scholar 

  • Freedman B (1989) Environmental ecology: the impacts of pollution and other stresses on ecosystem structure and function. Academic Press, San Diego

  • Groff AA, Silva JD, Nunes EA, Ianistcki M, Guecheva TN, Oliveira AMD et al (2010) UVA/UVB-induced genotoxicity and lesion repair in Colossoma macropomum and Arapaima gigas Amazonian fish. J Photochem Photobiol B 99(2):93–99

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase: The first enzymatic in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  • Heath AG (1995) Water pollution and fish physiology. CRC Press, Boca Raton

  • Hopkins WA, Snodgrass JW, Staub BP, Jackson BP, Congdon JD (2003) Altered swimming performance of a benthic fish (Erimyzon sucetta) exposed to contaminated sediments. Arch Environ Contam Toxicol 44:383–389

    Article  CAS  Google Scholar 

  • Jee JH, Kang JC (2004) Effect of phenanthrene on haematological parameters in olive flounder, Paralichthys olivaceus (Temminch et Schlegel). Aquat Res 35:1310–1317

    Article  CAS  Google Scholar 

  • Jee JH, Park KH, Keum YH, Kang JC (2006) Effects of 7,12-dimethylbenz(a)anthracene on growth and haematological parameters in Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquat Res 37:431–442

    Article  CAS  Google Scholar 

  • Kennedy CJ, Farrell AP (2005) Ion homeostasis and interrenal stress responses in juvenile Pacific herring, Clupea pallasi, exposed to the water-soluble fraction of crude oil. J Exp Mar Biol Ecol 323:43–56

    Article  CAS  Google Scholar 

  • Kochhann D, Benaduce APS, Copatti CE, Lorenzatto KR, Mesko MF, Flores EMM et al (2009) Protective effect of high alkalinity against the deleterious effects of chronic waterborne cadmium exposure on the detection of alarm cues by juvenile silver catfish (Rhamdia quelen). Arch Environ Contam Toxicol 56(4):770–775

    Article  CAS  Google Scholar 

  • Little EE, Archeski RD, Flerov BA, Kozlovskaya VI (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contam Toxicol 19:380–385

    Article  CAS  Google Scholar 

  • Lowe-McConnel RH (1999) Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo

    Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Matishov GG, Shparkovskii IA, Muraveiko VM, Taskina EV (2003) Chemosensory systems of fish as indicators of aqueous medium quality. Dokl Biol Sci 391:315–317

    Article  CAS  Google Scholar 

  • Matsuo AYO, Woodin BR, Reddy CM, Val AL, Stegeman JJ (2006) Humic substances and crude oil induce cytochrome P450 1A expression in the Amazonian fish species Colossoma macropomum (Tambaqui). Environ Sci Technol 40:2851–2858

    Article  CAS  Google Scholar 

  • Meager JJ, Batty RS (2007) Effects of turbidity on the spontaneous and prey-searching activity of juvenile Atlantic cod (Gadus morhua). Philos Trans R Soc Lond B Biol Sci 362:2123–2130

    Article  Google Scholar 

  • Nahrgang J, Camus L, Carls MG, Gonzalez P, Jonsson M, Taban IC et al (2010) Biomarker responses in polar cod (Boreogadus saida) exposed to the water soluble fraction of crude oil. Aquat Toxicol 97(3):234–242

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Olsvik PA, Nordtug T, Altin D, Lie KK, Overrein I, Hansen BH (2010) Transcriptional effects on glutathione S-transferases in first feeding Atlantic cod (Gadus morhua) larvae exposed to crude oil. Chemosphere 79(9):905–913

    Article  CAS  Google Scholar 

  • Omoregie E (1998) Changes in the haematology of the Nile tilapia under the influence of crude oil stress. J Environ Sci 1(2):118–123

    Google Scholar 

  • Pacheco M, Santos MA (1998) Induction of liver EROD and erythrocytic nuclear abnormalities by cyclophosphamide and PAHs in Anguilla anguilla L. Ecotoxicol Environ Saf 40:71–76

    Article  CAS  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392

    Article  CAS  Google Scholar 

  • Silva J, Freitas TRO, Marinho JR, Speit G, Erdtmann B (2000) Alkaline single-cell gel electrophoresis (Comet) assay for environmental in vivo biomonitoring with native rodents. Gen Mol Biol 23:241–245

    Article  Google Scholar 

  • Simonato JD, Guedes CLB, Martinez CBR (2008) Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol Environ Saf 69:112–120

    Article  CAS  Google Scholar 

  • Smith RJF (1992) Alarm signals in fishes. Rev Fish Biol Fisher 2:33–63

    Article  Google Scholar 

  • Trenzado C, Hidalgo MC, Garcia-Gallego M, Morales AE, Furné M, Domezain J et al (2006) Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 254:758–767

    Article  CAS  Google Scholar 

  • Val AL, Almeida-Val VMF (1995) Fishes of the Amazon and their environment: physiological and biochemical features. Springer, Berlin

    Book  Google Scholar 

  • Val AL, Almeida-Val VMF (1999) Effects of crude oil on respiratory aspects of some fish species of the Amazon. In: Val AL, Almeida-Val VMF (eds) Biology of tropical fish. Instituto Nacional de Pesquisas da Amazônia, Manaus, pp 277–292

    Google Scholar 

  • Vamosi SM, Schluter D (2002) Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids. Proc R Soc Lond B Biol Sci 269:923–930

    Article  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  Google Scholar 

  • van Kampen EJ, Zijlstra WG (1961) Standardization of hemoglobimetry: the hemiglobincyanide method. Clin Chim Acta 6:538–544

    Article  Google Scholar 

  • Vieira LR, Gravato C, Soares A, Morgado F, Guilhermino L (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere 76(10):1416–1427

    Article  CAS  Google Scholar 

  • Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences. Bioscience 51(3):209–217

    Article  Google Scholar 

  • Wisenden BD, Barbour KA (2005) Antipredator responses to skin extract of redbelly dace by free-ranging populations of redbelly dace and fathead minnows. Environ Biol Fish 72:227–233

    Article  Google Scholar 

  • Zbanyszek R, Smith LS (1983) The effect of water-soluble aromatic hydrocarbons on some haematological parameters of rainbow trout, Salmo gairdneri Richardson, during acute exposure. J Fish Biol 24:545–552

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a joint grant, PRONEX, from the Brazilian National Research Council (CNPq) and the Amazon State Research Foundation (FAPEAM) and INCT ADAPTA (CNPq/FAPEAM) grant to A. L. V. A. L. V is a recipient of a research fellowship from CNPq. D. K. was a recipient of master’s fellowship from CNPq. We thank Maria de Nazaré Paula da Silva and all Laboratory of Ecophysiology and Molecular Evolution staff for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiani Kochhann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochhann, D., de Azevedo Brust, S.M., Domingos, F.X.V. et al. Linking Hematological, Biochemical, Genotoxic, and Behavioral Responses to Crude Oil in the Amazon Fish Colossoma macropomum (Cuvier, 1816). Arch Environ Contam Toxicol 65, 266–275 (2013). https://doi.org/10.1007/s00244-013-9894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9894-4

Keywords

Navigation