Skip to main content

Advertisement

Log in

Children’s Exposure to Mercury-Contaminated Soils: Exposure Assessment and Risk Characterization

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Exposure to mercury (Hg)-contaminated soils may pose a health risk to children by way of oral, dermal, and inhalatory pathways. However, risk characterization studies, including contaminant bioaccessibility with child-specific exposure parameters and scenarios, are lacking. The objectives of this study were (1) to assess children’s Hg exposure using characterization and oral bioaccessibility data from Hg-contaminated soils characterized in previous studies (n = 8); and (2) to characterize probabilistic risk in terms of hazard index (HI) considering ingestion, dermal, and inhalation pathways. Total Hg concentrations in soils ranged from 2.61 to 1.15 × 104 mg kg−1. For moderately contaminated soils (S1–S5: Hg ≤ 12.15 mg kg−1), low oral bioaccessibility values (1.5–7.5 %) lead to HI < 1 in all scenarios. However, exposure to highly contaminated soils (S6–S8) may pose serious risks to children under normal exposure (HI 0.89–66.5) and soil–pica behaviour scenarios (HI up to 131). All three pathways significantly contributed to the risk. Using total Hg concentrations in calculations (assuming 100 % bioavailability) instead of considering Hg bioavailability leads to risk overestimation. Further research on oral, inhalatory, and dermal bioavailability of Hg, as well as child play behaviour, is recommended to obtain more accurate risk estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman MS, Skowronski GA, Turkall RM (2005) In vitro penetration of pig skin by heavy metals in soil. Soil Sediment Contam 14:123–134

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for mercury. United States Department of Health and Human Services, Public Health Service, Atlanta, GA

  • Agency for Toxic Substances and Disease Registry (2009) Mercury workgroup, children’s exposure to elemental mercury: a national review of exposure events

  • American Society for Testing and Materials (1995a) Section D4972–95a, Standard test method for pH of soils. ATSM, West Conshohocken

    Google Scholar 

  • American Society for Testing and Materials (1995b) Section D2487–83, Classification of soils for engineering purposes. ATSM, West Conshohocken

    Google Scholar 

  • Bacigalupo C, Hale B (2012) Human health risks of Pb and As exposure via consumption of home garden vegetables and incidental soil and dust ingestion: A probabilistic screening tool. Sci Total Environ 423:27–38

    Article  CAS  Google Scholar 

  • Barnett MO, Turner RR (2001) Bioaccessibility of mercury in soils. Soil Sed Contam 10:301–316

    CAS  Google Scholar 

  • Basta NT, Casteel SW, Rodriguez RR (2001) Development of chemical methods to assess the bioavailability of arsenic in contaminated media. United States Environmental Protection Agency National Center for Environmental Research, Washington, DC

    Google Scholar 

  • Bose-O’Reilly S, McCarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care 40:186–215

    Article  Google Scholar 

  • Calabrese EJ, Stanek EJ, James RC, Roberts SM (1997) Soil ingestion: a concern for acute toxicity in children. Environ Health Perspect 105:1354–1358

    Article  CAS  Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis. Lewis, Ottawa

    Google Scholar 

  • Centre d’Expertise en Analyse Environnementale du Québec (2006) Détermination du mercure: Méthode par spectrophotométrie d’absorption atomique, formation de vapeur, MA. 200-Hg 1.0. Rév.4. pp 1–14

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  Google Scholar 

  • Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230

    Article  CAS  Google Scholar 

  • Davis A, Bloom NS, Que Hee SS (1997) The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Anal 17:557–569

    Article  CAS  Google Scholar 

  • Firestone M, Moya J, Cohen-Hubal E, Zartarian V, Xue J (2007) Identifying childhood age groups for exposure assessments and monitoring. Risk Anal 27:701–714

    Article  Google Scholar 

  • Goldman LR, Shannon MW (2001) The committee on environmental health technical report: mercury in the environment: implications for paediatricians. Pediatrics 108:197–205

    Article  CAS  Google Scholar 

  • Gray JE, Plumlee GS, Morman SA, Higueras PL, Crock JG, Lowers HA, Witten ML (2010) In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environ Sci Technol 44:4782–4788

    Article  CAS  Google Scholar 

  • Guney M, Zagury GJ, Dogan N, Onay TT (2010) Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J Hazard Mater 182:656–664

    Article  CAS  Google Scholar 

  • Hemond HF, Solo-Gabriele HM (2004) Children’s exposure to arsenic from CCA-treated wooden decks and playground structures. Risk Anal 24:51–64

    Article  Google Scholar 

  • Laird BD, Van de Wiele TR, Corriveau MC, Jamieson HE, Parsons MB, Verstraete W et al (2007) Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem. Environ Sci Technol 41:5542–5547

    Article  CAS  Google Scholar 

  • Lee R, Middleton D, Caldwell K, Dearwent S, Jones S, Lewis B et al (2009) A review of events that expose children to elemental mercury in the United States. Environ Health Perspect 117:871–878

    CAS  Google Scholar 

  • Ljung K, Oomen A, Duits M, Selinus O, Berglund M (2007) Bioaccessibility of metals in urban playground soils. J Environ Sci Health A 42:1241–1250

    Article  CAS  Google Scholar 

  • Ministère du Développement Durable de l’Environnement et des Parcs du Québec (1996) Solides—determination du carbone inorganique total, dosage par spectrophotométrie IR, Méthode MA.410C 1.0. Québec

  • Ministère du Développement Durable de l’Environnement et des Parcs du Québec (1998) Politique de protection des sols et de réhabilitation des terrains contaminés. http://www.mddep.gouv.qc.ca/sol/terrains/politique/annexe_2_tableau_1.htm. Accessed 15 Jan 2011

  • Ministère du Développement Durable de l’Environnement et des Parcs du Québec (2007) État de situation des rejets anthropiques de mercure dans l’environnement au Québec. Direction des Politiques en Milieu Terrestre, Quebec

  • Neculita CM, Zagury GJ, Deschenes L (2005) Mercury speciation in highly contaminated soils from chloralkali plants using chemical extractions. J Environ Qual 34:255–262

    CAS  Google Scholar 

  • Nusslein F, Feicht EA, Schulte-Hostede S, Seltmann U, Kettrup A (1995) Exposure analysis of the inhabitants living in the neighbourhood of a mercury-contaminated industrial site. Chemosphere 30:2241–2248

    Article  CAS  Google Scholar 

  • Panda KK, Lenka M, Panda BB (1992) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant: I. Plant-availability, tissue-concentration and genotoxicity of mercury from agricultural soil contaminated with solid waste assessed in barley (Hordeum vulgare L.). Environ Pollut 76:33–42

    Article  CAS  Google Scholar 

  • Pouschat P, Zagury GJ (2006) In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environ Sci Technol 40:4317–4323

    Article  CAS  Google Scholar 

  • Reeder RJ, Schoonen MAA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. Rev Mineral Geochem 64:59–113

    Article  CAS  Google Scholar 

  • Richardson M (1997) Compendium of Canadian human exposure factors for risk assessment. O’Connor Associates Environmental Inc, Ottawa

  • Rodriguez RR, Basta NT, Casteel SW, Pace LW (1999) An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ Sci Technol 33:642–649

    Article  CAS  Google Scholar 

  • Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M et al (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705

    Article  CAS  Google Scholar 

  • Schroder JL, Basta NT, Casteel SW, Evans TJ, Payton ME, Si J (2004) Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. J Environ Qual 33:513–521

    Article  CAS  Google Scholar 

  • Skowronski GA, Turkall RA, Abdel-Rahman MS (2000) In vitro penetration of soil-aged mercury through pig skin. J Toxicol Environ Health A 61:189–200

    Article  CAS  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Stanek EJ, Calabrese EJ, Zorn M (2001) Soil ingestion distributions for Monte Carlo risk assessment in children. HERA7, pp 357–369

  • Tomiyasu T, Matsuyama A, Imura R, Kodamatani H, Miyamoto J, Kono Y et al (2012) The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil. Environ Earth Sci 65:1309–1322

    Article  CAS  Google Scholar 

  • United States Department of Agriculture (1993) Soil survey division Staff, soil survey manual. Chapter three: examination and description of soils. Soil conservation service, Washington, DC

  • United States Environmental Protection Agency (1989) Human health evaluation manual. EPA/540/1e89/002 Risk Assessment Guidance for Super-fund v.1. Office of solid waste and emergency response

  • United States Environmental Protection Agency (1995) Integrated Risk Information System (IRIS) Mercuric chloride (HgCl2) quickview. http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showQuickView&substance_nmbr=0692. Accessed 15 Jan 2011

  • United States Environmental Protection Agency (1996) Soil screening guidance: technical background document EPA/540/R-95/128. Office of solid waste and emergency response

  • United States Environmental Protection Agency (1997a) Mercury study report to Congress. EPA-452/R-97-003. Office of Air Quality Planning and Standards and Office of Research and Development, Washington, DC

  • United States Environmental Protection Agency (1997b) Exposure factors handbook. National center for environmental assessment, Office of research and development, Washington, DC

  • United States Environmental Protection Agency (2002) Supplemental guidance for developing soil screening levels for superfund sites, OSWER 9355.4-24. Solid waste and emergency response, office of emergency and remedial response, Washington, DC

  • United States Environmental Protection Agency (2007) Framework for metals risk assessment. EPA 120/R-07/001. Office of the science advisor risk assessment forum, Washington, DC

  • United States Environmental Protection Agency (2008) Child-Specific exposure factors handbook. EPA/600/R-06/096F. National center for environmental assessment office of research and development, Washington, DC

  • Welfringer B, Zagury GJ (2009) Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties. J Environ Qual 38:2237–2244

    Article  CAS  Google Scholar 

  • Zagury GJ, Bedeaux C, Welfringer B (2009) Influence of mercury speciation and fractionation on bioaccessibility in soils. Arch Environ Contam Toxicol 56:371–379

    Article  CAS  Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmos Environ 44:3239–3245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald J. Zagury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guney, M., Welfringer, B., de Repentigny, C. et al. Children’s Exposure to Mercury-Contaminated Soils: Exposure Assessment and Risk Characterization. Arch Environ Contam Toxicol 65, 345–355 (2013). https://doi.org/10.1007/s00244-013-9891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9891-7

Keywords

Navigation