Skip to main content
Log in

A Comparative Toxicogenomic Investigation of Oil Sand Water and Processed Water in Rainbow Trout Hepatocytes

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the expression of gene transcripts involved in toxic stress in rainbow trout hepatocytes exposed to oil sand water (OSW), lixiviate (OSLW), and processed water (OSPW). We pose the hypothesis that the changes in gene expression responses in cells exposed to a simulated oil sand extraction procedure (OSPW) differ from the gene expression responses of OSLW and OS. Rainbow trout hepatocytes were exposed to increasing concentrations of OSW, OSLW, and OSPW for 48 h at 15 °C. Cell viability was assessed by measuring membrane permeability, total RNA levels, and gene expression using an array of 16 genes involved in xenobiotic biotransformation (GST, CYP1A1, CYP3A4, MDR), metal homeostasis and oxidative stress (MT, SOD, and CAT), estrogenicity (VTG, ERβ), DNA repair (LIG, APEX, UNG, and OGG), cell growth (GADD45 and PCNA), and glycolysis (GAPDH). The results showed that the toxicogenomic properties of OSPW differed from those of OSLW and OSW. Gene transcripts that were influenced by OSW and OSLW, and strongly expressed in OSPW, were MT, CAT, GST (induction), CYP1A1, VTG, UNG/OGG, and PCNA. These genes are therefore considered not entirely specific to OSPW but to water in contact with OS. We also found gene transcripts that responded only with OSPW: SOD, GST (inhibition), MDR (inhibition), CYP3A4, GAPDH, GADD45, and APEX. Of these gene transcripts, the ones strongly associated with toxicity (loss of cell viability and RNA levels) were CYP3A4, GST, and GAPDH. Genes involved in DNA repair were also strongly related to the loss of cell viability but responded to both OSLW and OSPW. The observed changes in cell toxicity and gene expression therefore support the hypothesis that OSPW has a distinct toxic fingerprint from OSLW and OSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aluru N, Vijayan MM (2006) Resveratrol affects CYP1A expression in rainbow trout hepatocytes. Aquat Toxicol 77:291–297

    Article  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  • Aureliano M, Soares SS, Tiago T, Ramos S, Gutiérrez-Merino C (2007) Biological effects of decavanadate: muscle contraction, in vivo oxidative stress, and mitochondrial toxicity (Conference Paper). ACS Symp Ser Am Chem Soc 974:249–263

    Article  CAS  Google Scholar 

  • Baker LF, Ciborowski JJH, MacKinnon MD (2012) Petroleum coke and soft tailings sediment in constructed wetlands may contribute to the uptake of trace metals by algae and aquatic invertebrates. STOTEN 414:177–186

    CAS  Google Scholar 

  • Baksi SM, Frazier JM (1990) Isolated fish hepatocytes—Model systems for toxicology research. Aquat Toxicol 16:229–256

    Article  CAS  Google Scholar 

  • Benninghoff AD, Williams DE (2008) Identification of a transcriptional fingerprint of estrogen exposure in rainbow trout liver. Toxicol Sci 101:65–80

    Article  CAS  Google Scholar 

  • Bower NI, Johnston IA (2009) Selection of reference genes for expression studies with fish myogenic cell cultures. BMC Mol Biol 10:80–90

    Article  Google Scholar 

  • Chakraborty A, Oinam S, Karmakar R, Chatterjee M (2012) Vanadium toxicology—An assessment of general health, haematological aspects and energy response in an Indian catfish Clarias batrachus (Linn). Biometals 11:95–100

    Article  Google Scholar 

  • Colavecchia MV, Backus SM, Hodson PV, Parrott JL (2004) Toxicity of oil sand to early life stages of fathead minnows (Pimephales promelas). Environ Toxicol Chem 23:1709–1718

    Article  CAS  Google Scholar 

  • Colavecchia M, Hodson P, Parrott J (2006) CYP1A induction and blue sac disease in early life stages of white suckers (Catostomus commersoni) exposed to oil sands. J Toxicol Environ Health A 69:967–994

    Article  CAS  Google Scholar 

  • Debenest T, Turcotte P, Gagné F, Gagnon C, Blaise C (2012) Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata. Aquat Toxicol 112–113:83–91

    Article  Google Scholar 

  • Ferraris M, Radice S, Catalani P, Francolini M, Marabini L, Chiesara E (2002) Early oxidative damage in primary cultured trout hepatocytes: a time course study. Aquat Toxicol 59:283–296

    Article  CAS  Google Scholar 

  • Fontagné S, Lataillade E, Brèque J, Kaushik S (2008) Lipid peroxidative stress and antioxidant defence status during ontogeny of rainbow trout (Oncorhynchus mykiss). Br J Nutr 100:102–111

    Article  Google Scholar 

  • Frank RA, Fischer K, Kavanagh R, Burnison BK, Arsenault G, Headley JV et al (2009) Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environ Sci Technol 43:266–271

    Article  CAS  Google Scholar 

  • Gadhia SR, Calabro AR, Barile FA (2012) Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol Lett 212:169–179

    Article  CAS  Google Scholar 

  • Gagné F, André C, Douville M, Talbot A, Parrott J, McMaster M, Hewitt M (2011) An examination of the toxic properties of water extracts in the vicinity of an oil sand extraction site. J Environ Monit 13:3075–3086

    Article  Google Scholar 

  • Gagné F, Douville M, André C, Debenest T, Talbot A, Sherry J et al (2012) Differential changes in gene expression in rainbow trout hepatocytes exposed to extracts of oil sands process-affected water and the Athabasca River. Comp Biochem Physiol C: Toxicol Pharmacol 155:551–559

    Article  Google Scholar 

  • Gosselin P, Hrudey SE, Naeth A, Plourde A, Therrien R, Van Der Kraak G et al (2010) Environmental and health impacts of Canada’s sands industry. The Royal Society of Canada/La Société Royale du Canada, Ottawa

    Google Scholar 

  • He Y, Wiseman SB, Hecker M, Zhang X, Wang N, Perez LA et al (2011) Effect of ozonation on the estrogenicity and androgenicity of oil sands process-affected water. Environ Sci Technol 45:6268–6274

    Article  CAS  Google Scholar 

  • Heater SJ, Rains JD, Wells MC, Guerrero PA, Walter RB (2007) Perturbation of DNA repair gene expression due to interspecies hybridization. Comp Biochem Physiol C: Toxicol Pharmacol 145:156–163

    Article  Google Scholar 

  • Holowenko FM, MacKinnon MD, Fedorak PM (2002) Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry. Water Res 36:2843–2855

    Article  CAS  Google Scholar 

  • Jorgensen SM, Kleveland EJ, Grimholt U, Gjoen T (2006) Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol 8:398–408

    Article  CAS  Google Scholar 

  • Kaptaner B, Unal G (2011) Effects of 17α-ethynylestradiol and nonylphenol on liver and gonadal apoptosis and histopathology in Chalcalburnus tarichi. Environ Toxicol 26:610–622

    Article  CAS  Google Scholar 

  • Kavanagh RJ, Burninson BK, Frank RA, Solomon KR, van der Kraak G (2009) Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere 76:120–126

    Article  CAS  Google Scholar 

  • Kelly EN, Shoort JW, Schindler DW, Hodson PV, Ma M, Kwan AK et al (2009) Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proc Natl Acad Sci U S A 106:22346–22351

    Article  CAS  Google Scholar 

  • Kelly EN, Schindler DW, Hodson PV, Short JW, Radmanovich R, Nielsen CC (2010) Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proc Natl Acad Sci U S A 107:16178–16183

    Article  CAS  Google Scholar 

  • Klauning JE, Ruch RJ, Goldblatt PJ (1985) Trout hepatocyte culture: isolation and primary culture. In Vitro Cell Dev Biol 21:221–228

    Article  Google Scholar 

  • Morsy MD, Abdel-Razek HA, Osman OM (2011) Effect of vanadium on renal Na + , K + -ATPase activity in diabetic rats: a possible role of leptin. J Physiol Biochem 67:61–69

    Article  CAS  Google Scholar 

  • Nagler JJ, Cavileer T, Sullivan J, Cy DG, Rexroad C III (2007) The complete nuclear estrogen receptor family in rainbow trout: discovery of the novel ERα2 and both ERβ isoforms. Gene 392:164–173

    Article  CAS  Google Scholar 

  • Olsson P-E, Kling P (1995) Regulation of hepatic metallothionein in estradiol-treated rainbow trout. Mar Environ Res 39:127–129

    Article  CAS  Google Scholar 

  • Puttaswamy N, Liber K (2012) Influence of inorganic anions on metals release from oil sands coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia. Comp Biochem Physiol C: Toxicol Pharmacol 155:551–559

    Article  Google Scholar 

  • Rowland SJ, West CE, Jones D, Scarlett AG, Frank RA, Hewitt LM (2011) Steroidal aromatic ‘naphthenic acids’ in oil sands process-affected water: structural comparisons with environmental estrogens. Environ Sci Technol 45:9806–9815

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana, Totowa, pp 365–386

    Google Scholar 

  • Salaberria I, Hansen BH, Asensio V, Olsvik PA, Andersen RA, Jenssen BM (2009) Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 234:98–106

    Article  CAS  Google Scholar 

  • Sandbacka M, Christianson I, Isomaa B (2000) The acute toxicity of surfactants on fish cells, Daphnia magna and fish—A comparative study. Toxicol In Vitro 14:61–68

    Article  CAS  Google Scholar 

  • Sandrini JZ, Trindade GS, Nery LE, Marins LF (2009) Time-course expression of DNA repair-related genes in hepatocytes of zebrafish (Danio rerio) after UV-B exposure. Photochem Photobiol 85:220–226

    Article  CAS  Google Scholar 

  • Scarlett AG, West CE, Jones D, Galloway TS, Rowland SJ (2012) Predicted toxicity of naphthenic acids present in oil sands process-affected waters to a range of environmental and human endpoints. Sci Total Environ 425:119–127

    Article  CAS  Google Scholar 

  • Schramm LL, Smith RG (1989) Some parametric studies of oil sand conditioning in the hot water flotation process. AOSTRA J Res 5:87–107

    CAS  Google Scholar 

  • Song Y, Salbu B, Heier LS, Teien HC, Lind OC, Oughton D et al (2012) Early stress responses in Atlantic salmon (Salmo salar) exposed to environmentally relevant concentrations of uranium. Aquat Toxicol 112–113:62–71

    Article  Google Scholar 

  • Treberg JR, Stacey JE, Driedzic WR (2012) Vanadium accumulation in ascidian coelomic cells is associated with enhanced pentose phosphate pathway capacity but not overall aerobic or anaerobic metabolism. Comp Biochem Physiol B: Biochem Mol Biol 161:323–330

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:7

    Google Scholar 

  • Yang C, Wang Z, Yang Z, Hollebone B, Brown CE, Landriault M et al (2011) Chemical fingerprints of Alberta oil sands and related petroleum products. Environ Forensics 12:173–188

    Article  CAS  Google Scholar 

  • Zhang P, Liu SS, Ngan HY (2012) TAp73-mediated the activation of C-Jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells. PLoS ONE 7:e42985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was funded by Environment Canada’s Genomics Strategy and the Research and Monitoring on Oil Sands programs. The manuscript was edited by Keltie Purcell of Environment Canada’s Translation Brokering and Editing Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gagné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagné, F., André, C., Turcotte, P. et al. A Comparative Toxicogenomic Investigation of Oil Sand Water and Processed Water in Rainbow Trout Hepatocytes. Arch Environ Contam Toxicol 65, 309–323 (2013). https://doi.org/10.1007/s00244-013-9888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9888-2

Keywords

Navigation