Skip to main content
Log in

Assessing Mercury Exposure and Biomarkers in Largemouth Bass (Micropterus Salmoides) from a Contaminated River System in California

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We evaluated mercury (Hg) exposure and two biomarkers, metallothionein (MT) gene expression and histopathological alterations in a wild fish species, largemouth bass (Micropterus salmoides), collected from the Sacramento-San Joaquin Delta, CA, a region polluted with Hg from historic mining activities. Hg is highly toxic and can disrupt multiple physiological systems in vertebrate species, including the immune system. Total mercury (THg) concentration in muscle tissue ranged from 0.12 to 0.98 ppm (wet weight) and was not related to body condition (r 2 = 0.005, p = 0.555). Using linear regression analysis, we found a positive relationship between MT gene expression (as determined using quantitative polymerase chain reaction) and copper, zinc, manganese, aluminum, and nickel (decreased to one variable by way of principal component analysis) (r 2 = 0.379, p = 0.044), a negative relationship with selenium (r 2 = 0.487, p = 0.017), and a weak, negative relationship with THg concentrations (r 2 = 0.337, p = 0.061). Juvenile largemouth bass collected from Hg-contaminated areas displayed histopathological features of immunosuppression compared with those collected from less contaminated areas as evidenced by significantly lower macrophage density in kidney and liver tissue (p = 0.018 and 0.020, respectively), greater trematode density in liver tissue (p = 0.014), and a greater number of adult trematodes. Our results suggest that largemouth bass may be experiencing sublethal effects from chronic Hg exposure. Furthermore, our findings illustrate the utility of examining multiple sublethal markers of effect to assess the impacts of contaminant exposure on physiological function in wild species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams SM, Bevelhimer MS, Greeley MS, Levine DA, Teh SJ (1999) Ecological risk assessment in a large river-reservoir: 6. Bioindicators of fish population health. Environ Toxicol Chem 18:628–640

    CAS  Google Scholar 

  • Barst BD, Gevertz AK, Chumchal MM, Smith JD, Rainwater TR, Drevnick PE et al (2011) Laser ablation ICP-MS co-localization of mercury and immune response in fish. Environ Sci Technol 45:8982–8988

    Article  CAS  Google Scholar 

  • Berntssen MG, Hylland K, Julshamn K, Lundebye AK, Waagbø R (2004) Maximum limits of organic and inorganic mercury in fish feed. Aquat Nutr 10:83–97

    Article  CAS  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017

    Article  CAS  Google Scholar 

  • Boudou A, Delnomdedieu M, Georgescauld D, Ribeyre F, Saouter E (1991) Fundamental roles of biological barriers in mercury accumulation and transfer in freshwater ecosystems. Water Air Soil Pollut 56:807–821

    Article  CAS  Google Scholar 

  • Chmielnicka J, Brzeznicka EA (1978) The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds. Bull Environ Contam Toxicol 19:183–190

    Article  CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Connon RE, Beggel S, D’Abronzo LS, Geist JP, Pfeiff J, Loguinov AV et al (2011) Linking molecular biomarkers with higher level condition indicators to identify effects of copper exposures on the endangered delta smelt (Hypomesus transpacificus). Environ Toxicol Chem 30:290–300

    Article  CAS  Google Scholar 

  • Davis JA, May MD, Greenfield BK, Fairey R, Roberts C, Ichikawa G et al (2002) Contaminant concentration in sport fish from the San Francisco Bay 1997. Mar Pollut Bull 44:1117–1129

    Article  CAS  Google Scholar 

  • Davis JA, Greenfield BK, Ichikawa G, Stephenson M (2008) Mercury in sport fish from the Sacramento-San Joaquin Delta region, California, USA. Sci Total Environ 391:66–75

    Article  CAS  Google Scholar 

  • Finkelstein M, Grasman KA, Croll DA, Tershy BR, Keitt BS, Jarman WM et al (2007) Contaminant-Associated alteration of immune function in black-footed albatross (Phoebastria nigripes) a North Pacific predator. Environ Toxicol Chem 26:1893–1903

    Article  Google Scholar 

  • Foe C, Davis J, Schwarzbach S, Stephenson M, Slotton D (2003) Conceptual model and working hypotheses of mercury bioaccumulation in the bay-delta ecosystem and its tributaries. Available at: http://loer.tamug.edu/calfed/FinalReports.htm. Accessed 28 March 2012

  • Fossi MC (1998) Biomarkers as diagnostic and prognostic tools for wildlife risk assessment: integrating endocrine-disrupting chemicals. Toxicol Ind Health 14:291–309

    CAS  Google Scholar 

  • Gehringer D (2007) Molecular, histological, and behavioral differences in largemough bass (Micropterus salmoides) and topsmelt (Atheriniops affinis) exposed to methylmercury. Master’s thesis, CSU State Monterey Bay, Seaside

  • Gonzalez P, Dominique Y, Massabuau JC, Boudou A, Bourdineaud JP (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39:3972–3980

    Article  CAS  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hamilton S, Mehrle P (1986) Metallothionein in fish: Review of its importance in assessing stress from metal contamination. Trans Am Fish Soc 115:596–609

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Sandheinrich MB, Wiener JG, Rada RG (2002) Effects of dietary methylmercury on reproduction of fathead minnows. Environ Sci Technol 36:877–883

    Article  CAS  Google Scholar 

  • Hastings RA, Eyheralde I, Dawson SP, Walker G, Reynolds SE, Billett MA et al (1999) A 220-kDa activator complex of the 26 S proteasome in insects and humans. J Biol Chem 274:25691–25700

    Article  CAS  Google Scholar 

  • Hollis L, Hogstrand C, Wood CM (2001) Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout. Arch Environ Contam Toxicol 41:468–474

    Article  CAS  Google Scholar 

  • Huggett RJ, Kimerle RA, Mehrle PMJ, Bergman HL (1992) Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Lewis, Boca Raton

    Google Scholar 

  • Hurley JP, Benoit JM, Babiarz CL, Shafer MM, Andren AW, Sullivan JR et al (1995) Influences of watershed characteristics on mercury levels in Wisconsin Rivers. Environ Sci Technol 29:1867–1875

    Article  CAS  Google Scholar 

  • Keating MH, Mahaffey KR, Schoeny R, Rice GE, Bullock OR, Ambrose Jr RB et al. (1997) Mercury study report to congress, vol 1 Executive summary. EPA-452/R-97-003. United States Environmental Protection Agency, Washington DC

  • Kevin M, Sam C, Susan S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Google Scholar 

  • Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F et al (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ Res 79:20–32

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1991) Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 80:915–921

    Article  Google Scholar 

  • Melwani AR, Bezalel SN, Hunt JA, Grenier JL, Ichikawa G, Heim W et al (2009) Spatial trends and impairment assessment of mercury in sport fish in the Sacramento–San Joaquin Delta watershed. Environ Pollut 157:3137–3149

    Article  CAS  Google Scholar 

  • Moyle PB (2002) Inland fishes of California. University of California Press, Berkeley

    Google Scholar 

  • National Research Council (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DC

    Google Scholar 

  • Office of Environmental Health Hazard Assessment (1999) Overview of San Francisco Bay sport fish contamination and response activities. Available at: http://www.oehha.org/fish/pdf/fishup99.pdf. Accessed 28 March 2012

  • Ostrach DJ, Low-Marchelli JM, Eder KJ, Whiteman SJ, Zinkl JG (2008) Maternal transfer of xenobiotics and effects on larval striped bass in the San Francisco Estuary. Proc Natl Acad Sci U S A 105:19354–19359

    Article  CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians T (2004) Determination of stable housekeeping genes, differentially regulated target genes, and sample integrity: Bestkeeper-Excel based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schaffter RG (1998) Growth of largemouth bass in the Sacramento-San Joaquin Delta. Interagency Ecological Program Newsletter 11. California Department of Water Resources, Sacramento, pp 27–30

  • Schlenk D, Zhang YS, Nix J (1995) Expression of hepatic metallothionein messenger RNA in feral and caged fish species correlates with muscle mercury levels. Ecotoxicol Environ Saf 31:282–286

    Article  CAS  Google Scholar 

  • Schmitt CJ, Brumbaugh WG (1990) National contaminant biomonitoring program: Concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in U.S. freshwater fish, 1976–1984. Arch Environ Contam Toxicol 19:731–747

    Article  CAS  Google Scholar 

  • Schwarzbach S, Adelsbach T (2002) Field assessment of avian mercury exposure in the Bay-Delta ecosystem. Task 3B. CALFED Bay-Delta Program Final Report. United States Geological Survey, Sacramento

  • Spearow JL, Kota RS, Ostrach DJ (2011) Environmental contaminant effects on juvenile striped bass in the San Francisco estuary, California, USA. Environ Toxicol Chem 30:393–402

    Article  CAS  Google Scholar 

  • Sweet LI, Zelikoff JT (2001) Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J Toxicol Environ Health B Crit Rev 4:161–205

    CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  CAS  Google Scholar 

  • United States Geological Survey (2005) Mercury contamination from historic gold mining in California. Fact Sheet number FS-061-00

  • Verreault J, Skaare JU, Jenssen BM, Gabrielsen GW (2004) Effects of organochlorine contaminants on thyroid hormone levels in arctic breeding glaucous gulls, Larus hyperboreus. Environ Health Perspect 112:532–537

    Article  CAS  Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17(2):146–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The views expressed in this article are those of the author and do not necessarily reflect the position or policy of the Department of Toxic Substances Control, the California Environmental Protection Agency, or the State of California. The Earl and Ethel Myers Marine Biology and Oceanographic Trust provided funding for this project and San Francisco Estuary Institute provided data use from the Fish Mercury Project. CDFG-MPSL staff also provided Hg and trace metal analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne B. Gehringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehringer, D.B., Finkelstein, M.E., Coale, K.H. et al. Assessing Mercury Exposure and Biomarkers in Largemouth Bass (Micropterus Salmoides) from a Contaminated River System in California. Arch Environ Contam Toxicol 64, 484–493 (2013). https://doi.org/10.1007/s00244-012-9838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9838-4

Keywords

Navigation