Source Identification of Soil Mercury in the Spanish Islands

  • José Antonio Rodríguez Martín
  • Gregoria Carbonell
  • Nikos Nanos
  • Carmen Gutiérrez


This study spatially analysed the relation between mercury (Hg) content in soil and Hg in rock fragment for the purpose of assessing natural soil Hg contribution compared with Hg from human inputs. We present the Hg content of 318 soil and rock fragment samples from 11 islands distributed into two Spanish archipelagos (the volcanic Canary Islands [Canaries] and the Mediterranean Balearic [Balearic] islands). Assumedly both are located far enough away from continental Hg sources to be able to minimise the effects of diffuse pollution. Physical and chemical soil properties were also specified for the samples. Hg contents were significantly greater in the Balearic limestone soils (61 μg kg−1) than in the volcanic soils of the Canaries (33 μg kg−1). Hg levels were also greater in topsoil than in rocky fragments, especially on the Balearics. The soil-to-rock ratios varied between 1 and 30. Interestingly, the highest topsoil-to-rock Hg ratio (>16 ×) was found in the vicinity of a coal-fired power plant in Majorca, whereas no similar areas in the Canary archipelago were identified.


  1. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New YorkGoogle Scholar
  2. Aelion CM, Davis HT, McDermott S, Lawson AB (2009) Soil metal concentrations and toxicity: associations with distances to industrial facilities and implications for human health. Sci Total Environ 407:2216–2223CrossRefGoogle Scholar
  3. Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  4. Boluda R (1988) Relaciones estadísticas de los valores de metales pesados (Cd, Co., Cu, Cr, Ni, Pb y Zn) con el pH, contenido en materia orgánica, carbonatos totales y arcilla de los suelos de la comarca La Plana de Requena-Utiel (Valencia). Anal Edafol Agrobiol 47:1503–1524Google Scholar
  5. Bueno P, Bellido E, Rubí J, Ballesta R (2009) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environ Geol 56:815–824CrossRefGoogle Scholar
  6. Carbonell G, Imperial RMD, Torrijos M, Delgado M, Rodriguez JA (2011) Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere 85:1614–1623CrossRefGoogle Scholar
  7. Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1123–1181Google Scholar
  8. Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151:257–263CrossRefGoogle Scholar
  9. Coequyt J, Environmental Working Group, Natural Resources Defense Council, Clean Air Network (1999) Mercury falling: an analysis of mercury pollution from coal-burning power plants. Environmental Working Group, Washington, DCGoogle Scholar
  10. Cooper CM, Gillespie WB Jr (2001) Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed. Environ Pollut 111:67–74CrossRefGoogle Scholar
  11. Dietz R, Riget F, Born EW (2000) An assessment of selenium to mercury in Greenland marine animals. Sci Total Environ 245:15–24CrossRefGoogle Scholar
  12. Engle MA, Sexauer Gustin M, Lindberg SE, Gertler AW, Ariya PA (2005) The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmos Environ 39:7506–7517CrossRefGoogle Scholar
  13. Furl C, Meredith C (2011) Mercury accumulation in sediment cores from three Washington state lakes: evidence for local deposition from a coal-fired power plant. Arch Environ Contam Toxicol 60:26–33CrossRefGoogle Scholar
  14. García-Sánchez A, Murciego A, Álvarez-Ayuso E, Regina IS, Rodríguez-González MA (2009) Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J Hazard Mater 168:1319–1324CrossRefGoogle Scholar
  15. Gbor PK, Wen D, Meng F, Yang F, Sloan JJ (2007) Modeling of mercury emission, transport and deposition in North America. Atmos Environ 41:1135–1149CrossRefGoogle Scholar
  16. Gil C, Ramos-Miras J, Roca-Pérez L, Boluda R (2010) Determination and assessment of mercury content in calcareous soils. Chemosphere 78:409–415CrossRefGoogle Scholar
  17. Gimeno-García E, Andreu V, Boluda R (1995) Distribution of heavy metals in rice farming soils. Arch Environ Contam Toxicol 29:476–483CrossRefGoogle Scholar
  18. Goodarzi F (2009) Environmental assessment of bottom ash from Canadian coal-fired power plants. Open Environ Biol Monit J 2:1–10CrossRefGoogle Scholar
  19. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New YorkGoogle Scholar
  20. Göthberg A, Greger M (2006) Formation of methyl mercury in an aquatic macrophyte. Chemosphere 65:2096–2105CrossRefGoogle Scholar
  21. Holy M, Leblond S, Pesch R, Schröder W (2009) Assessing spatial patterns of metal bioaccumulation in French mosses by means of an exposure index. Environ Sci Pollut Res Int 16:499–507CrossRefGoogle Scholar
  22. Krabbenhoft D, Engstrom D, Gilmour C, Harris R, Hurley J, Mason R (2007) Monitoring and evaluating trends in sediment and water indicators. In: Harris R, Krabbenhoft DP, Mason R et al (eds) Ecosystem responses to mercury contamination: indicators of change. SETAC Press, Pensacola, pp 47–87CrossRefGoogle Scholar
  23. Lacerda LD, de Souza M, Ribeiro MG (2004) The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ Pollut 129:247–255CrossRefGoogle Scholar
  24. Liu R, Wang Q, Lu X, Fang F, Wang Y (2003) Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environ Pollut 124:39–46CrossRefGoogle Scholar
  25. López Alonso M, Benedito JL, Miranda M, Fernández JA, Castillo C, Hernández J et al (2003) Large-scale spatial variation in mercury concentrations in cattle in NW Spain. Environ Pollut 125:173–181CrossRefGoogle Scholar
  26. Nóvoa-Muñoz JC, Pontevedra-Pombal X, Martínez-Cortizas A, García-Rodeja Gayoso E (2008) Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Sci Total Environ 394:303–312CrossRefGoogle Scholar
  27. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47–49CrossRefGoogle Scholar
  28. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D (2006) Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ 370:147–156CrossRefGoogle Scholar
  29. Pant P, Allen M (2007) Interaction of soil and mercury as a function of soil organic carbon: some field evidence. Bull Environ Contam Toxicol 78:539–542CrossRefGoogle Scholar
  30. Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115–5124CrossRefGoogle Scholar
  31. Rodríguez Martín J, Vázquez de la Cueva A, Grau Corbí J, López Arias M (2007) Factors controlling the spatial variability of copper in topsoils of the northeastern region of the Iberian Peninsula, Spain. Water Air Soil Pollut 186:311–321CrossRefGoogle Scholar
  32. Rodríguez Martín J, Carbonell Martín G, López Arias M, Grau Corbí J (2009a) Mercury content in topsoils, and geostatistical methods to identify anthropogenic input in the Ebro basin (Spain). Span J Agric Res 7:107–118Google Scholar
  33. Rodríguez Martín J, Vazquez de la Cueva A, Grau Corbí J, Martínez Alonso C, López Arias M (2009b) Factors controlling the spatial variability of mercury distribution in Spanish topsoil. Soil Sediment Contam 18:30–42CrossRefGoogle Scholar
  34. Salminen R, Plant J, Reeder S (2005) Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland, ISBN 9516909213.
  35. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822CrossRefGoogle Scholar
  36. Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF et al (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36:2303–2310CrossRefGoogle Scholar
  37. Sun B, Zhou S, Zhao Q (2003) Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 115:85–99CrossRefGoogle Scholar
  38. Tack FMG, Vanhaesebroeck T, Verloo MG, Van Rompaey K, Van Ranst E (2005) Mercury baseline levels in Flemish soils (Belgium). Environ Pollut 134:173–179CrossRefGoogle Scholar
  39. Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471CrossRefGoogle Scholar
  40. Walkley A (1935) An examination of methods for determining organic carbon and nitrogen in soils. J Agric Sci 25:598–609CrossRefGoogle Scholar
  41. Wang S, Zhang L, Li G, Wu Y, Hao J, Pirrone N et al (2010) Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 10:1183–1192CrossRefGoogle Scholar
  42. Wang Z, Darilek J, Zhao Y, Huang B, Sun W (2011) Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers. J Soil Sed 11:3–14CrossRefGoogle Scholar
  43. Weir S, Halbrook R, Sparling D (2010) Mercury concentrations in wetlands associated with coal-fired power plants. Ecotoxicology 19:306–316CrossRefGoogle Scholar
  44. Wu Y, Zhou Q, Adriano DC (1991) Interim environmental guidelines for cadmium and mercury in soils of China. Water Air Soil Pollut 57–58:733–743CrossRefGoogle Scholar
  45. Yang X, Wang L (2008) Spatial analysis and hazard assessment of mercury in soil around the coal-fired power plant: a case study from the city of Baoji, China. Environ Geol 53:1381–1388CrossRefGoogle Scholar
  46. Zarcinas B, Pongsakul P, McLaughlin M, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ Geochem Health 26:359–371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • José Antonio Rodríguez Martín
    • 1
  • Gregoria Carbonell
    • 2
  • Nikos Nanos
    • 3
  • Carmen Gutiérrez
    • 4
  1. 1.Department of the EnvironmentInstituto Nacional de Investigación y Tecnología Agraria y Alimentaría (INIA)MadridSpain
  2. 2.Laboratory for Ecotoxicology, Department of the EnvironmentInstituto Nacional de Investigación y Tecnología Agraria y Alimentaría (INIA)MadridSpain
  3. 3.Madrid Technical UniversityMadridSpain
  4. 4.Department of Environmental ContaminationInstituto de Ciencias Agrarias (ICA)–Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations