Toxicity of Metal–Ethylenediaminetetraacetic Acid Solution as a Function of Chemical Speciation: An Approach for Toxicity Assessment

  • C. Peraferrer
  • M. Martínez
  • J. Poch
  • I. Villaescusa
Article

Abstract

The influence of complexation by ethylenediaminetetraacetic acid (EDTA) on the toxicity of Cd(II), Cu(II), Cd(II), and Ni(II) was investigated. Result of the Microtox test, which is based on measuring the decrease of light emitted by Vibrio fischeri bacterium when exposed to a toxicant, was used as an indication of toxicity. The effect of pH and EDTA molar ratio that might potentially modify the percentage of chemical species in solution on toxicity was evaluated. In general, results indicate that toxicity decreases when increasing the pH value as well as the EDTA molar ratio. Chemical modeling was used to predict metal speciation and correlation analysis to relate chemical species with the obtained toxicity results. The species that most contribute to toxicity resulted to be MeCl+ (Me = metal), which is formed as a consequence of the presence of the bioassay medium (2 % NaCl). A model that predicts metal-solution toxicity by using the chemical species, which most contribute to toxicity is proposed as a useful tool for toxicity assessment in waters containing metal ions and EDTA.

References

  1. Babich H, Stotzky G (1983) Influence of chemical speciation on the toxicity of heavy metals to the microbiota. In: Nriagu JO (ed) Aquatic toxicology: advances in environmental science and technology. Wiley, New York, pp 1–46Google Scholar
  2. Campbell CD, Hird M, Lumsdon DG, Meeussen JCL (2000) The effect of EDTA and fulvic acid on Cd, Zn and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli. Chemosphere 40:319–325CrossRefGoogle Scholar
  3. Cook SV, Chu A, Goodman RH (2000) Influence of salinity on Vibrio fischeri and lux-modified Pseudomonas fluorescens toxicity bioassays. Environ Toxicol Chem 19:2474–2477Google Scholar
  4. Corporation Microbics (1994) Microtox M500 manual. Microbics, CarlsbadGoogle Scholar
  5. Deheyn DD, Bencheikh-Latmani R, Latz MI (2004) Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. Environ Toxicol 19:161–178CrossRefGoogle Scholar
  6. Fulladosa E, Murat JC, Martínez M, Vilalescusa I (2004) Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch Environ Contam Toxicol 46:176–182Google Scholar
  7. Fulladosa E, Murat JC, Martinez M, Villaescusa I (2005) Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere 60:45–48CrossRefGoogle Scholar
  8. Ho KT, Kuhn A, Pelletier MC, Hendricks TL, Helmstetter A (1999) pH dependent toxicity of five metals to three marine organisms. Environ Toxicol 14:235–240CrossRefGoogle Scholar
  9. Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779CrossRefGoogle Scholar
  10. Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430CrossRefGoogle Scholar
  11. Loureiro C, Castro BB, Pereira JL, Gonçalves F (2011) Performance of standard media in toxicological assessments with Daphnia magna: chelators and ionic composition versus metal toxicity. Ecotoxicology 20:139–148CrossRefGoogle Scholar
  12. Puigdomenech I (2004) Hydra/Medusa chemical equilibrium database and plotting software KTH. http://www.kemi.kth.se/medusa/. Accessed 20 February 2012
  13. Ribó JM, Kaiser KLE (1983) Effects of selected chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12:1421–1442CrossRefGoogle Scholar
  14. Ribó JM, Yang JE, Huang PM (1989) Luminescent bacteria toxicity assay in the study of mercury speciation. Hydrobiology 188(189):155–162CrossRefGoogle Scholar
  15. Rodea-Palomares I, González-Garcia C, Leganés F, Fernández-Piñas F (2009) Effect of pH, EDTA and anions on heavy metal toxicity toward a bioluminescent cyanobacterial bioreporter. Arch Environ Contam Toxicol 57:477–487CrossRefGoogle Scholar
  16. Sillanpää M, Oikari A (1996) Assessing the impact of complexation by EDTA and DTPA on heavy metal toxicity using Microtox bioassay. Chemosphere 32:1485–1497CrossRefGoogle Scholar
  17. Sorvari J, Sillanpää M (1996) Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere 33:1119–1127CrossRefGoogle Scholar
  18. Villaescusa I, Martinez M, Pilar M, Murat JC, Hosta C (1996) Toxicity of cadmium species on luminescent bacteria. Fresenius J Anal Chem 354:566–570Google Scholar
  19. Villaescusa I, Martí S, Matas C, Martínez M, Ribó JM (1997) Chromium(VI) toxicity to luminescent bacteria. Environ Toxicol Chem 16:871–874CrossRefGoogle Scholar
  20. Villaescusa I, Matas C, Hosta C, Martínez M, Murat JC (1998) Evaluation of lead(II) and nickel(II) toxicity in NaCl and NaClO4 solutions by using Microtox® bioassay. Fresenius J Anal Chem 361:355–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • C. Peraferrer
    • 1
  • M. Martínez
    • 2
  • J. Poch
    • 3
  • I. Villaescusa
    • 1
  1. 1.Department of Chemical Engineering, Escola Politècnica SuperiorUniversitat de GironaGeronaSpain
  2. 2.Department of Chemical Engineering, Escola Tècnica Superior d’Engineria Industrial de BarcelonaUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Department of Applied Mathematics, Escola Politècnica SuperiorUniversitat de GironaGeronaSpain

Personalised recommendations