Skip to main content

Advertisement

Log in

Arsenic Speciation, Distribution, and Bioaccessibility in Shrews and Their Food

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Shrews (Sorex cinereus) collected at a historic mine in Nova Scotia, Canada, had approximately twice the arsenic body burden and 100 times greater daily intake of arsenic compared with shrews from a nearby uncontaminated background site. Shrews store arsenic as inorganic and simple methylated arsenicals. Much of the arsenic associated with their primary food source, i.e., small invertebrates, may be soil adsorbed to their exoskeletons. A physiologically based extraction test estimated that 47 ± 2% of invertebrate arsenic is bioaccessible in the shrew gastrointestinal tract. Overall, shrews appear to be efficient at processing and excreting inorganic arsenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedin J, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Adair BM, Waters SB, Devesa V, Drobna Z, Styblo M, Thomas DJ (2005) Commonalities in metabolism of arsenicals. Environ Chem 2:161–166

    Article  CAS  Google Scholar 

  • Bates JLE (1987) Gold in Nova Scotia. Nova Scotia Department of Mines and Energy, Halifax

  • Bellocq MI, Smith SM (2003) Population dynamics and foraging of Sorex cinereus (masked shrew) in the boreal forest of eastern Canada. Ann Zool Fenn 40:27–34

    Google Scholar 

  • Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M et al (2009) Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 22:1713–1720

    Article  CAS  Google Scholar 

  • Erry BV, MacNair MR, Meharg AA, Shore RF (2000) Arsenic contamination in wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) on abandoned mine sites in southwest Britain. Environ Pollut 110:179–187

    Article  CAS  Google Scholar 

  • Francesconi KA, Kuehnelt D (2004) Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 129:373–395

    Article  CAS  Google Scholar 

  • Hindle AG, McIntyre IW, Campbell KL, MacArthur RA (2003) The heat increment of feeding and its thermoregulatory implications in the short-tailed shrew (Blarina brevicauda). Can J Zool 81:1445–1453

    Article  Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Smith AH, Kalman DA, Moore LE (1996) Methylation study of a population environmentally exposed to arsenic in drinking water. Environ Health Perspect 104:620–628

    Article  CAS  Google Scholar 

  • Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Del Razo LM, Thomas DJ (2003) Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 191:202–210

    Article  CAS  Google Scholar 

  • Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T et al (2008) Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Chemosphere 71:1963–1969

    Article  CAS  Google Scholar 

  • Kaufman CA, Bennett JR, Koch I, Reimer KJ (2007) Lead bioaccessibility in food web intermediates and the influence on ecological risk characterization. Environ Sci Technol 41:5902–5907

    Article  CAS  Google Scholar 

  • Koch I, McPherson K, Smith PG, Easton L, Doe KG, Reimer KJ (2007) Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment. Mar Pollut Bull 54:586–594

    Article  CAS  Google Scholar 

  • Kuehnelt D, Goessler W, Schlagenhaufen C, Irgolic KJ (1997) Arsenic compounds in terrestrial organisms III: arsenic compounds in Formica sp. from an old arsenic smelter site. Appl Organomet Chem 11:859–867

    Article  CAS  Google Scholar 

  • Laird BD, Van De Wiele TR, Corriveau MC, Jamieson HE, Parsons MB, Verstraete W et al (2007) Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem. Environ Sci Technol 41:5542–5547

    Article  CAS  Google Scholar 

  • Langdon CJ, Meharg AA, Feldmann J, Balgar T, Charnock J, Farquhar M et al (2002) Arsenic-speciation in arsenate-resistant and non-resistant populations of the earthworm, Lumbricus rubellus. J Environ Monit 4:603–608

    Article  CAS  Google Scholar 

  • Ma W, Denneman W, Faber J (1991) Hazardous exposure of ground-living small mammals to cadmium and lead in contaminated terrestrial ecosystems. Arch Environ Contam Toxicol 20:266–270

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mir KA, Rutter A, Koch I, Smith PG, Reimer KJ, Poland JS (2007) Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta 72:1507–1518

    Article  CAS  Google Scholar 

  • Moriarty MM (2009) Arsenic speciation in the terrestrial environment, M.Sc. Thesis, Royal Military College of Canada, Kingston

  • Moriarty MM, Koch I, Gordon RA, Reimer KJ (2009) Arsenic speciation of terrestrial invertebrates. Environ Sci Technol 43:4818–4823

    Article  CAS  Google Scholar 

  • Ng JC (2005) Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2:146–160

    Article  CAS  Google Scholar 

  • Pernetta JC (1976) Diets of the shrews Sorex araneus L. and Sorex minutus L. in Wytham grassland. J Anim Ecol 45:899–912

    Article  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    Article  CAS  Google Scholar 

  • Petrick JS, Jagadish B, Mash EA, Aposhian HV (2001) Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  • Reimer KJ, Koch I, Cullen WR (2010) Organoarsenicals: distribution and transformation in the environment. In: Sigel A, Sigel H, Sigel RKO (eds) Metals ions in life sciences. RSC Publishing, Cambridge, pp 165–229

    Google Scholar 

  • Richardson GM, Bright DA, Dodd M (2006) Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? II: oral bioaccessibility of contaminants in soil. Hum Ecol Risk Assess 12:606–616

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    Article  CAS  Google Scholar 

  • Sample BE, Suter GWI (2002) Screening evaluation of the ecological risks to terrestrial wildlife associated with a coal ash disposal site. Hum Ecol Risk Assess 8:637–656

    Article  CAS  Google Scholar 

  • Saunders JR, Knopper LD, Yagminas A, Koch I, Reimer KJ (2009) Use of biomarkers to show sub-cellular effects in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site. Sci Total Environ 407:5548–5554

    Article  CAS  Google Scholar 

  • Saunders JR, Knopper LD, Koch I, Reimer KJ (2010) Arsenic transformations and biomarkers in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site in Montague, Nova Scotia, Canada. Sci Total Environ 408:829–835

    Article  CAS  Google Scholar 

  • Schaeffer R, Francesconi KA, Kienzl N, Soeroes C, Fodor P, Váradi L et al (2006) Arsenic speciation in freshwater organisms from the river Danube in Hungary. Talanta 69:856–865

    Article  CAS  Google Scholar 

  • Smith PG, Koch I, Gordon RA, Mandoli DF, Chapman BD, Reimer KJ (2005) X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ Sci Technol 39:248–254

    Article  CAS  Google Scholar 

  • Smith PG, Koch I, Reimer KJ (2008a) An investigation of arsenic compounds in fur and feathers using X-ray absorption spectroscopy speciation and imaging. Sci Total Environ 390:198–204

    Article  CAS  Google Scholar 

  • Smith PG, Koch I, Reimer KJ (2008b) Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Sci Total Environ 390:188–197

    Article  CAS  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  Google Scholar 

  • Száková J, Tlustoš P, Goessler W, Pavlíková D, Balík J (2005) Comparison of mild extraction procedures for determination of arsenic compounds in different parts of pepper plants (Capsicum annum L.). Appl Organomet Chem 19:308–314

    Article  Google Scholar 

  • Talmage SS, Walton BT (1991) Small mammals as monitors of environmental contaminants. Rev Environ Contam Toxicol 119:47–145

    Article  CAS  Google Scholar 

  • Thomson D, Maher W, Foster S (1993) Arsenic and selected elements in marine angiosperms, south-east coast, NSW, Australia. Appl Organomet Chem 21:381–395

    Article  Google Scholar 

  • United States Environmental Protection Agency (1993) Wildlife exposure factors handbook, Washington, DC

  • Watts MJ, Button M, Brewer TS, Jenkin GRT, Harrington CF (2008) Quantitative arsenic speciation in two species of earthworms from a former mine site. J Environ Monit 10:753–759

    Article  CAS  Google Scholar 

  • Whittaker JC, Feldhamer GA (2005) Population dynamics and activity of southern short-tailed shrews (Blarina carolinensis) in southern Illinois. J Mammal 86:294–301

    Article  Google Scholar 

Download references

Acknowledgments

PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, were supported by the United States Department of Energy–Basic Energy Sciences; a major facilities access grant from the Natural Sciences and Engineering Research Council of Canada; the University of Washington; Simon Fraser University; and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was also supported by NSERC awards, including a Discovery Grant as well as funds from the Metals in the Human Environment Strategic Network (MITHE-SN), to K. J. Reimer. We thank PNC/XSD beamline scientist R. Gordon of Simon Fraser University for help with XAS analysis; Michael Parsons of Natural Resources Canada for providing laboratory space, data; and insight; and Jared Saunders and John Peters of the Environmental Sciences Group for their invaluable field work in Nova Scotia and laboratory work at the Royal Military College of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Reimer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriarty, M.M., Koch, I. & Reimer, K.J. Arsenic Speciation, Distribution, and Bioaccessibility in Shrews and Their Food. Arch Environ Contam Toxicol 62, 529–538 (2012). https://doi.org/10.1007/s00244-011-9715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-011-9715-6

Keywords

Navigation